This paper investigates the application of the support vector machine and the least-squares support vector machine regressions to the uncertainty quantification of complex systems. The feasibility and the accuracy of the above techniques are demonstrated by predicting the efficiency of an integrated voltage regulator with 8 stochastic parameters
SVM and LS-SVM for the Uncertainty Quantification of Complex Systems / Trinchero, R.; Canavero, F. G.. - ELETTRONICO. - (2018). ((Intervento presentato al convegno 4th Workshop Uncertainty Modeling for Engineering Applications tenutosi a Split, Croatia nel 10-11th December 2018.
Titolo: | SVM and LS-SVM for the Uncertainty Quantification of Complex Systems |
Autori: | |
Data di pubblicazione: | 2018 |
Abstract: | This paper investigates the application of the support vector machine and the least-squares suppo...rt vector machine regressions to the uncertainty quantification of complex systems. The feasibility and the accuracy of the above techniques are demonstrated by predicting the efficiency of an integrated voltage regulator with 8 stochastic parameters |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
UMEMA18_SVM_IVR_final.pdf | submitted paper | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2768135