This paper investigates the application of the support vector machine and the least-squares support vector machine regressions to the uncertainty quantification of complex systems. The feasibility and the accuracy of the above techniques are demonstrated by predicting the efficiency of an integrated voltage regulator with 8 stochastic parameters
SVM and LS-SVM for the Uncertainty Quantification of Complex Systems / Trinchero, R.; Canavero, F. G.. - ELETTRONICO. - (2018). (Intervento presentato al convegno 4th Workshop Uncertainty Modeling for Engineering Applications tenutosi a Split, Croatia nel 10-11th December 2018).
SVM and LS-SVM for the Uncertainty Quantification of Complex Systems
R. Trinchero;F. G. Canavero
2018
Abstract
This paper investigates the application of the support vector machine and the least-squares support vector machine regressions to the uncertainty quantification of complex systems. The feasibility and the accuracy of the above techniques are demonstrated by predicting the efficiency of an integrated voltage regulator with 8 stochastic parametersFile | Dimensione | Formato | |
---|---|---|---|
UMEMA18_SVM_IVR_final.pdf
accesso aperto
Descrizione: submitted paper
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
853.15 kB
Formato
Adobe PDF
|
853.15 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2768135
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo