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Abstract. This paper investigates the application of the
support vector machine and the least-squares support vec-
tor machine regressions to the uncertainty quantification
of complex systems. The feasibility and the accuracy
of the above techniques are demonstrated by predicting
the efficiency of an integrated voltage regulator with 8
stochastic parameters.

I. INTRODUCTION

In the last decades, several mathematical tools have
been proposed for the statistical analysis of complex
systems affected by uncertainty parameters. Among the
state-of-the-art techniques, polynomial chaos (PC) [1]
expansion represents a well-established approach which
have been successfully applied as an alternative to the
standard Monte Carlo (MC) technique for the design
exploration in different fields.

Recently, machine learning techniques have enjoyed
widespread applications in different research areas. Sup-
port vector machine (SVM) [2] and least-squares sup-
port vector machine (LS-SVM) [3] regressions can be
considered as promising candidates for the uncertainty
quantification of system, for which compact surrogates
with multiple parameters can be built.

This work investigates the application of the above
machine learning techniques to the statistical analysis of a
realistic structure with 8 uniformly distributed stochastic
parameters. The results of the SVM and LS-SVM have
been compared with the ones obtained via a sparse PC
regression.

II. PROBLEM STATMENT & PROPOSED
MODELING TECHNIQUES

Let us consider a set of L training data {(xi, yi)}Li=1

provided by a generic nonlinear system y = M(x) as a
function of the input parameters x = [x1, . . . , xd] ∈ Rd.
Our goal is to find an accurate surrogate M̃ such that:

yi ≈ M̃(xi), for i = 1 . . . L. (1)
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Fig. 1. Graphical interpretation of the SVM (panel (a)) and the
LS-SVM (panel(b)) regressions.

II.1. SVM & LS-SVM REGRESSION

Let us consider the following non-linear regression:

MSVM,LS-SVM (x) =

L∑
i=1

βiK(xi,x) + b (2)

where βi ∈ R are scalar coefficients, K(·, ·) : Rd → R is
the kernel function and b ∈ R is the bias term. The goal
of the SVM and the LS-SVM regressions is to estimate
the optimum set of βi and b by solving two different
optimization problems.

Figure 1(a) provides a graphical interpretation of the
optimization problem behind the SVM regression [2]. The
underlying idea is to minimize the positive ξi and negative
ξ∗i deviations larger than ε between the model predictions
and the training samples. The above constraints, along
with the one on the model flatness, lead to a complex opti-
mization problem which allows estimating the parameters
βi and b in (2).

The LS-SVM regression provides an alternative in-
terpretation of the above optimization problem without
losing the advantages of the standard SVM regression [3].
It minimizes the error ei shown in Fig. 1(b) computed
between the model prediction and the training samples in
the L2 norm. The above constraint, along with the one
on the model flatness, allows estimating the parameters
βi and b via the solution of a least-square problem.

II.2. Sparse PC Expansion

As a reference for the performance of the above ad-
vocated techniques, we consider the classical Sparse PC



Table 1. Performance comparison of the considered
regression techniques.

Method Kernel RMSE Mean µ̂ Std. Dev. σ̂
Regression µ̂MC=67.008 σ̂MC=0.305

SVM

Linear 0.1585 67.018 0.275
Poly Order 2 0.1785 67.037 0.299
Poly Order 3 0.4281 67.000 0.522

RBF 0.1658 67.035 0.277

LS-SVM

Linear 0.1580 67.019 0.281
Poly Order 2 0.1663 67.037 0.291
Poly Order 3 0.4434 67.000 0.539

RBF 0.1552 67.022 0.280
Sparse PC Order ≤ 10 0.1696 67.023 0.278

method, based on the following expansion:

MPC(x) =
∑
λ∈Nd

aλΨλ(x), (3)

where aλ are the unknown coefficients and Ψλ are the
multivariate orthonormal polynomials.

For a given order h, usually the PC coefficients aλ can
be estimated via non-intrusive techniques by truncating
the polynomial expansion in order to preserve a total
degree ≤ h. The total number of required coefficients
defined as (d+h)!

d!h! blows up for large values of d and h.
The sparse PC approach with an adaptive degree h [1]

can be used to overcome the above issue. In fact, it
allows selecting the variables having the most impact
on the model response, thus minimizing the number of
polynomial basis required in the regression. This approach
represents a powerful tool for the uncertainty quantifica-
tion in high-dimensional space and for strongly nonlinear
problems.

III. APPLICATION EXAMPLE

The SVM and LS-SVM regressions with polynomial
and RBF kernel have been used to predict the impact of
8 uncertain parameters with uniform distribution on the
efficiency of an integrated voltage regulator (see [4] for
additional details).

The above regressions and the sparse PC regression
have been trained with the 200 samples of a latin hyper-
cube calculated via the full-wave solver of ANSYS. The
predictions of each surrogate are then compared with the
results of a MC simulation with 10000 samples.

Table 1. provides a detailed comparison among the
accuracy of the three approaches in terms of the root
mean square error (RMSE), mean value µ̂ and standard
deviation σ̂. From the results, the LS-SVM regression
with RBF kernel provides the most accurate prediction.
However, a remarkable accuracy is also achieved by the
linear LS-SVM and SVM regressions and by the sparse
PC expansion. Also, Fig. 2 provides an illustrative com-
parison among the PDFs and the scatter plots generated
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Fig. 2. Top Panel: comparison of the PDFs obtained from a 10000
samples MC simulation (gray bins) and the ones predicted by the LS-
SVM with RBF kernel (red curve) and the PC expansion (blue curve).
Bottom Panel: scatter plots obtained by comparing the MC results with
the ones predicted by the LS-SVM and PC surrogates.

from the predictions of the LS-SVM regression with RBF
kernel, the sparse PC expansion and the MC simulations.
All the results confirm once again the good accuracy
achieved by the SVM-based surrogates.

IV. CONCLUSIONS

Two promising alternatives based on the SVM and the
LS-SVM regression have been proposed for the gener-
ation of compact surrogate models of complex systems
with several parameters. From the illustrated results, the
LS-SVM regression can be considered as a viable solution
for the uncertainty quantification, since, for the specific
example considered in this work, it produces more accu-
rate predictions than the PC expansion.
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