The paper addresses and solves the problem of multirobot collaborative localization in highly symmetrical 2D environments, such as the ones encountered in logistic applications. Because of the environment symmetry, the most common localization algorithms may fail to provide a correct estimate of the position and orientation of the robot, if its initial position is not known, no specific landmark is introduced, and no absolute information (e.g., GPS) is available: the robot can estimate its position with respect to the walls of the corridor, but it could be critical to determine in which corridor it is actually moving. The proposed algorithm is based upon a particle filter cooperative Monte Carlo Localization (MCL) and implements a three-stage procedure for the global localization and the accurate position tracking of each robot of the team. Online simulations and experimental tests, which investigate different situations with respect to the number of robots involved and their initial positions, show how the proposed solution can lead to the global localization of each robot, with a precision sufficient to be used as starting point for the subsequent robot tracking.
Multirobot Localization in Highly Symmetrical Environments / F., Abrate; Bona, Basilio; Indri, Marina; Rosa, Stefano; F., Tibaldi. - In: JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS. - ISSN 0921-0296. - STAMPA. - 71:(2013), pp. 403-421. [10.1007/s10846-012-9790-6]
Multirobot Localization in Highly Symmetrical Environments
BONA, Basilio;INDRI, Marina;ROSA, STEFANO;
2013
Abstract
The paper addresses and solves the problem of multirobot collaborative localization in highly symmetrical 2D environments, such as the ones encountered in logistic applications. Because of the environment symmetry, the most common localization algorithms may fail to provide a correct estimate of the position and orientation of the robot, if its initial position is not known, no specific landmark is introduced, and no absolute information (e.g., GPS) is available: the robot can estimate its position with respect to the walls of the corridor, but it could be critical to determine in which corridor it is actually moving. The proposed algorithm is based upon a particle filter cooperative Monte Carlo Localization (MCL) and implements a three-stage procedure for the global localization and the accurate position tracking of each robot of the team. Online simulations and experimental tests, which investigate different situations with respect to the number of robots involved and their initial positions, show how the proposed solution can lead to the global localization of each robot, with a precision sufficient to be used as starting point for the subsequent robot tracking.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2503195
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo