MASCALI, LORENZO
Mostra
records
Risultati 1 - 3 di 3 (tempo di esecuzione: 0.005 secondi).
A Machine Learning-based Anomaly Detection Framework for Building Electricity Consumption Data
2023 Mascali, Lorenzo; Schiera, DANIELE SALVATORE; Eiraudo, Simone; Barbierato, Luca; Giannantonio, Roberta; Patti, Edoardo; Bottaccioli, Lorenzo; Lanzini, Andrea
Neural network-based energy signatures for non-intrusive energy audit of buildings: Methodological approach and a real-world application
2023 Eiraudo, Simone; Schiera, Daniele Salvatore; Mascali, Lorenzo; Barbierato, Luca; Giannantonio, Roberta; Patti, Edoardo; Bottaccioli, Lorenzo; Lanzini, Andrea
Synthetic Ground Truth Generation of an Electricity Consumption Dataset
2022 Mascali, Lorenzo; Eiraudo, Simone; Barbierato, Luca; Schiera, Daniele Salvatore; Giannantonio, Roberta; Patti, Edoardo; Bottaccioli, Lorenzo; Lanzini, Andrea
Citazione | Data di pubblicazione | Autori | File |
---|---|---|---|
A Machine Learning-based Anomaly Detection Framework for Building Electricity Consumption Data / Mascali, Lorenzo; Schiera, DANIELE SALVATORE; Eiraudo, Simone; Barbierato, Luca; Giannantonio, Roberta; Patti, Edoardo; Bottaccioli, Lorenzo; Lanzini, Andrea. - In: SUSTAINABLE ENERGY, GRIDS AND NETWORKS. - ISSN 2352-4677. - 36:(2023). [10.1016/j.segan.2023.101194] | 1-gen-2023 | Lorenzo MascaliDaniele Salvatore SchieraSimone EiraudoLuca BarbieratoEdoardo PattiLorenzo BottaccioliAndrea Lanzini + | main.pdf; 1-s2.0-S2352467723002023-main.pdf |
Neural network-based energy signatures for non-intrusive energy audit of buildings: Methodological approach and a real-world application / Eiraudo, Simone; Schiera, Daniele Salvatore; Mascali, Lorenzo; Barbierato, Luca; Giannantonio, Roberta; Patti, Edoardo; Bottaccioli, Lorenzo; Lanzini, Andrea. - In: SUSTAINABLE ENERGY, GRIDS AND NETWORKS. - ISSN 2352-4677. - 36:(2023). [10.1016/j.segan.2023.101203] | 1-gen-2023 | Eiraudo, SimoneSchiera, Daniele SalvatoreMascali, LorenzoBarbierato, LucaPatti, EdoardoBottaccioli, LorenzoLanzini, Andrea + | 2023_SEGAN___Neural_Network_based_Regression_Models_for_Non_Intrusive_Energy_Audit_of_Buildings__Methodological_Approach_and_a_Real_World_Application.pdf; 1-s2.0-S2352467723002114-main.pdf |
Synthetic Ground Truth Generation of an Electricity Consumption Dataset / Mascali, Lorenzo; Eiraudo, Simone; Barbierato, Luca; Schiera, Daniele Salvatore; Giannantonio, Roberta; Patti, Edoardo; Bottaccioli, Lorenzo; Lanzini, Andrea. - (2022), pp. 1-6. (Intervento presentato al convegno 5th International Conference on Smart Energy Systems and Technologies (SEST 2022) tenutosi a Eindhoven (The Netherlands) nel 5-7 September, 2022) [10.1109/SEST53650.2022.9898444]. | 1-gen-2022 | Mascali, LorenzoEiraudo, SimoneBarbierato, LucaSchiera, Daniele SalvatoreGiannantonio, RobertaPatti, EdoardoBottaccioli, LorenzoLanzini, Andrea | SEST_2022___Lorenzo_Mascali_NO COPYRIGHT.pdf; Synthetic_Ground_Truth_Generation_of_an_Electricity_Consumption_Dataset.pdf |