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Abstract

A suboptimal management or system malfunction can often lead to abnormal energy consumption in buildings, which results in
a significant waste of energy. For this reason, the adoption of advanced monitoring systems, based on Machine Learning (ML)
and visualization techniques, is crucial to avoid possible deviations from the baseline energy consumption. However, the historical
data on which analyses are based generally do not report the occurrence of anomalies. Therefore, the application of supervised
ML techniques is limited and unsupervised approaches are favoured. Moreover, domain experts find most ML techniques hard to
interpret and thus find it difficult to contextualize anomalies. To overcome these issues, this work proposes a machine learning-
based Anomaly Detection Framework (ADF) that involves the use of two complementary semi-supervised ML applications to
obtain a highly interpretable and accurate detection of anomalies. Both techniques use Symbolic Aggregate approXimation (SAX)
encoding to extract the most relevant information from load profiles. The aim of the first approach is to maximize the interpretability
of the definition and distinction between anomalous and normal behavior. This is achieved using a Classification And Regression
Tree (CART), albeit at the expense of a coarser output granularity. The second approach exploits a Multi-Layer Perceptron (MLP)
algorithm to obtain a higher and more accurate output resolution, although it leads to a less interpretable definition of any anomalous
behavior. The ADF has been applied to a real case study using electricity consumption data provided by a large telecommunications
service provider. The results show that combining both ML models enhances the accuracy and interpretability of the detected
anomalies.
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1. Introduction

Buildings contribute to global energy consumption to a sig-
nificant extent, with around one-third of electricity final use and
about a quarter of global CO2 emissions being attributed to their
operation [1]. Commercial and industrial buildings were found
to account for 8 % of the total energy consumption in 2018 [2].
Therefore, enhancing energy efficiency and a rational resource
management in these sectors are imperative to reduce the en-
ergy footprint and greenhouse gas emissions.

Academic research has focused on two primary approaches
to tackle the aforementioned issues: i) retrofitting building en-
velopes and systems, and ii) optimizing the control and man-
agement of building energy systems. Moreover, a significant
portion of the energy inefficiencies of buildings results from
a poor energy management rather than inefficient building en-
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velopes and systems [3]. Therefore, improving building en-
ergy monitoring systems is essential in order to address the
aforementioned challenges [4]. Such monitoring systems can
be classified into two main types: low-level monitoring sys-
tems and high-level monitoring systems. Low-level monitoring
systems oversee energy consumption on a machine-by-machine
basis and exploit dedicated sensors. However, this approach re-
quires highly specialized applications in each individual build-
ing, thus resulting in high costs. On the other hand, high-
level monitoring systems exploit energy consumption data from
smart meters,thereby allowing for a more generalized approach
that is not intrusive or specific to individual buildings. However,
in order to obtain an effective high-level monitoring system,
the consumption data analysis and anomaly alerting shouldbe
accurate and interpretable and should inform on how the con-
sumption diverges from typical responses to external drivers.
Moreover, the user interface plays a fundamental role, espe-
cially for high-level monitoring systems. These systems are
not directly interfaced with the sensors or actuators of the plant
and cannot act directly on the control systems. Furthermore,
identifying any abnormal behavior within historical consump-
tion time series can be a challenging task since there are no
clear boundaries to distinguish such behavior from normal be-
havior. Therefore, it is crucial to offer additional assistance to
analysts / domain experts / energy managers, apart from simply
alerting them about anomalies. This result to be fundamental to
persuade stakeholders about the need to take action to restore
consumptions to normal levels.

This work extends a previous work of ours [5], by proposing
an Anomaly Detection Framework that is based on combining
two different semi-supervised ML approaches to emphasize the
accuracy, interoperability and graphical representation of any
detected anomalies. The method [5] is here extended to extract
the Synthetic Ground Truth (SGT) from a raw dataset by im-
proving the accuracy of anomaly detection algorithms through
two semi-supervised model trainings. The first developed al-
gorithm, named SAX-CART, uses SAX encoding as a method
to extract relevant features of load profiles and a Classifica-
tion And Regression Tree (CART) model to reconstruct profiles
from exogenous variables and define instances classified incor-
rectly as anomalous. The key feature of the SAX-CART ap-
proach is the interpretability of the model outputs, albeit at the
expense of accuracy. The second algorithm, named SAX-MLP,
uses an MLP that is trained in estimating electricity consump-
tion and defines anomalies by imposing an upper limit on the
magnitude of the errors committed by the model beyond which
observations are considered anomalous. In this case, the use of
SAX encoding is reserved for only the steps related to extract-
ing the SGT from the dataset. This approach, unlike the SAX-
CART approach, is aimed at privileging the accuracy of model
outputs rather than their interpretability. This proposed frame-
work introduces a novel approach to data selection, which has
the aim of extracting SGT from raw time series data. In order
to extract the SGT, we applied the Pareto principle to the ap-
propriately clustered dataset. The Pareto principle, also known
as the 80/20 rule, allows to distinguish the portion of useful and
generalizable information from the noise present in the dataset.

Furthermore, the study conducts a comprehensive comparison
between two distinct types of algorithms, highlighting their pre-
cision performance, and evaluating the type of output with a
focus on extracting useful information for identifying the pos-
sible causes of the detected anomalies. Another significant con-
tribution lies in the application of the proposed framework to a
real-world case study, thereby extending the applicability of the
adopted methodologies to the analyzed scenario and enhanc-
ing the framework’s significance and robustness. The data used
in this study originate from smart meters installed in various
buildings of a prominent telecommunication service provider
in Italy. For Non-Disclosure Agreements (NDA) reasons, the
organization restricts the dissemination of research data. The
remainder of this work is structured as follows. Section 2 in-
troduces the anomaly detection process in building electricity
consumption data and presents a review of the relevant solu-
tions in the literature. Section 3 outlines the proposed Anomaly
Detection Framework in detail. Section 4 reports the experi-
mental results obtained by analyzing a real dataset consisting of
hourly measurements of the aggregate power data of the afore-
mentioned Telecommunication (TLC) stations. Finally, Sec-
tion 5 presents the concluding remarks and discusses potential
avenues for future works.

2. Related work

Improving energy monitoring systems in buildings, espe-
cially in the highly energy-intensive commercial and indus-
trial sectors, is of crucial importance to increase energy effi-
ciency and reduce operating costs. One effective method that
can be used to identify abnormal energy consumption patterns
in various locations and at various times involvess the use of
anomaly detection and visualization techniques. These tech-
niques help a energy manager interpret and contextualize pat-
terns and anomalies. They also allow a better understanding of
the root causes and more effective actions to be introduced. It is
worth noting that, in the context of power consumption data, it
is fundamental to exploit domain knowledge in order to define
what outliers actually represent real anomalies of the system
being monitored and what one instead represent only inconsis-
tencies in the dataset. Indeed, anomalies can be classified on the
basis of three different characteristics: i) punctual anomalies, ii)
collective anomalies, and iii) contextual anomalies [6]. Punc-
tual anomalies are anomalies that are characterised by the in-
volvement of only a few observations, if not just a sin- gle one,
within a dataset, which deviate significantly from the character-
istic value ranges assumed by the other observations. Collec-
tive anomalies are instead characterized by a set of observations
which, taken individually, do not constitute an anomaly but
which, when observed in a comprehensive way, do not conform
to the typical patterns found in the dataset. Punctual anoma-
lies and collective anomalies are deduced exclusively through
the analysis of historical series. On the other hand, contextual
anomalies can be deduced by correlating a monitored variable
with the explanatory variables. For instance, energy consump-
tion patterns may be deemed anomalous if they do not reflect

2



the typical correlation with temperature or if they do not con-
form to seasonality or weekly scheduling patterns or more gen-
erally exogenous variables that represent drivers of energy con-
sumption. Defining anomalies through context in power con-
sumption data is the most robust and advantageous approach,
as it can provide initial elements that can then be used to inves-
tigate the causes of the anomalies.

2.1. Anomaly detection techniques
The choice of the algorithm to use for anomaly detection de-

pends to a great extent on the dataset that is available for train-
ing, and particularly on the availability of labels for anoma-
lous observations [6]. Three categories of algorithms can be
identified: supervised, unsupervised, and semi-supervised. Su-
pervised algorithms exploit the labels assigned to each dataset
element to learn the difference between normal and anomalous
behaviors. A high performance is generally guaranteed, but ac-
quiring a labelled dataset requires a significant effort and a sig-
nificant expenditure of resources. Moreover, the performances
are closely related to the preprocessing of the dataset, as errors
in the labels can lead to ineffective models. In addition, it is of-
ten a challenging task to identify anomalies in complex systems
during a manual labelling process, and labelled data are not al-
ways readily available. For these reasons, to the best of our
knowledge, there are currently no studies in the literature that
have utilized a supervised approach in this particular research
field.

A new and innovative way of tackling the challenge of us-
ing labelled datasets is by resorting semi-supervised algorithms.
This approach has not been widely explored yet and is often
referred to as unsupervised [7]. The substantial difference be-
tween the two approaches lies in how the training dataset is pre-
processed. The training dataset in semi-supervised approaches
undergoes filtering and any anomalous behavior is removed.
This filtering can greatly improve the robustness of a model by
training it on ground truth [8]. For example, a semi-supervised
techniques was exploited in [9] to train a Long Short-Term
Memory (LSTM) on a filtered dataset. Although this method
leads to appreciable results, the adopted filter relies only on
a statistical approach that is more suitable for removing noise
from observations than detecting real anomalies. In [10], a hy-
brid approach is proposed that cascades an unsupervised algo-
rithm to label the dataset and a supervised Two-Class Boosted
Decision Tree algorithm in order to accurately classify anoma-
lous observations. In [11], the authors used the Self-Organizing
Map (SOM) to identify consumption profiles characterized by
anomalous consumption and leveraged on the obtained results
to enhance load forecasting through a Neural Network (NN).

Finally, unsupervised anomaly detection algorithms use un-
labelled datasets and are based on the implicit assumption that
normal instances are much more frequent than anomalies in the
tested data [12, 13]. If this assumption is verified, the model
that is trained by these algorithms can accurately model nor-
mal behavior but may encounter significant errors when deal-
ing with anomalous behavior. Unsupervised approaches are
undoubtedly the most widespread in the literature. A signif-
icant amount of research has focused on autoregressive tech-

niques. For example, the authors of [13], the authors used an
Autoregressive Integrated Moving Average (ARIMA) model to
identify anomalous load profiles in an office building. An ap-
proach based on a Recurrent Neural Network (RNN) was tested
in [14] to predict consumptions and define consumption pat-
terns that did not conform to patterns forecast as anomalous.
An approach based on LSTM was tested in [15] through the ar-
tificial introduction of anomalies into a dataset, and then consid-
ering observations that were certainly anomalous. An improve-
ment in model precision, compared to an ARIMA-type model
was observed. Finally, an anomaly detection approach, based
on a Support Vector Regression (SVR) model, was presented
in [12] and a decomposition of the time series was exploited to
auto-correlate the consumption time series with specific char-
acteristics of the load profiles. Several studies in the literature
have shown the effectiveness of clustering algorithms in identi-
fying anomalous profiles. In [16], a k-medoids algorithm was
adopted to identify homogeneous consumption clusters, within
which anomalous observations were identified through a Local
Outlier Factor (LOF)-type algorithm. The same algorithm was
also adopted in [17], although in this case, the time series was
transformed into a frequency domain before being processed
by the clustering algorithm. A Principal Component Analy-
sis (PCA)-type dimensionality reduction technique was used in
[18] coupled with a clustering techniques to identify anomalous
consumption profiles.

In conclusion, it is worth noting that autoregressive and clus-
tering algorithms rely solely on the analysis of the recurrence
of consumption patterns. Therefore, they are able to identify
anomalies of both punctual and collective type but are not ef-
fective in detecting contextual anomalies. This leads to difficul-
ties in interpreting the anomalies identified by these algorithms.
In fact, in order to develop more interpretable algorithms, it is
crucial to identify the key factors that drive consumption and to
define anomalous behaviors in relation to such factors. There-
fore, non-autoregressive algorithms should be introduced along
with efficient visualization systems to obtain better results.

2.2. Anomaly visualization techniques
Anomaly detection models are frequently used as informa-

tion systems by energy managers in the industrial or commer-
cial sectors. However, detecting an anomaly without contex-
tualizing it does not always involve a physical intervention to
the system. Therefore, the algorithms of these models should
not only differentiate between normal and anomalous behaviors
but should also provide clear and dependable information to the
stakeholders.

A technique that can be used to aid energy managers in mak-
ing sense of anomaly detection model results is to integrate
these models with visualization tools. This approach allows a
more comprehensive understanding of the data to be obtained.
The importance of visual analysis was emphasized In [19], be-
cause the absence of pre-labelled datasets and the need to define
anomalous behavior, not only with respect to the data but also
in the context in which it occurs, make it essential to develop
approaches that can provide a reacon to consider an observa-
tion as being anomalous. Moreover, it is of fundamental im-
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portance to develop an effective graphical representation that
enables an analyst to evaluate the anomalies identified by the
algorithm on basis of their domain knowledge. The above was
also supported in [20], which emphasized the importance of
using visualization tools to support analysts in analyzing unla-
belled datasets. The work conducted in [21, 22] described prac-
tical applications of time series visualization systems aimed at
improving the monitoring capabilities of energy managers. The
role of the user was found to have a strategic level of impor-
tance in [23], in which outputs were evaluated through satis-
faction questionnaires, which were administered to a sample of
energy managers.

A complementary approach to the use of graphic visualiza-
tion to improve the interpretability of anomaly detection sys-
tems is the adoption of algorithms that provide simple and self-
explanatory outputs. One ML method which, according to the
literature, is highly interpretable, is the decision tree technique,
which include CART algorithms. This type of algorithm di-
vides the domain of input variables to identify regions of the do-
main that are characterized by the highest possible purity of the
output variable. The partition rules of the domain are explicit
and can therefore be easily extracted from the model. More-
over, CART models are able to handle multiple variables and
were adopted in [24, 25] to identify homogeneous consump-
tion conditions. Multiple types of CART visualization were de-
scribed In [26], and the possibility of analysts interacting easily
with the rules extracted from the models and, consequently, of
deducing new knowledge was highlighted. The possibility of
structuring an anomaly detection tool, based on decision trees,
was demonstrated In [27]. The methodology was based on the
use of k-means to identify typical consumption profiles and,
subsequently, CART was used to determine the external condi-
tions that determined the consumption patterns. However, clus-
tering algorithms exploit the daily periodicity of a time series
to categorize consumption. Therefore, they can only provide
information on whether a particular day is anomalous or not,
without specifying the exact time of the anomalous observa-
tion, and a further analysis is required to obtain such details. A
solution to this limitation was identified in [28, 29] where SAX
encoding was applied to time series of building consumptions.
SAX encoding [30] allows consumption profiles to be catego-
rized at a sub-daily level, thus enabling greater detail to be ob-
tained in identifying anomalous periods. SAX transformation
allows the profiles of the dataset to be grouped according to
the word through which they are encoded [31]. In literature, it
is possible to identify two different types of approaches aimed
at improving the encoding of SAX. The first approach, found
in [32, 33, 34], involves extracting a larger number of features
from the upstream data set before the SAX encoding. While this
approach allows for a more accurate description of the data, it
significantly increases the complexity of the encoding, thereby
resulting in a clear reduction in the possibility of implicitly
defining meaningful clusters within the dataset. On the other
hand, the second approach aims to optimize the encoding itself,
making it more flexible and adaptable to the dataset under ex-
amination [28, 35]. Additionally, the SAX methodology intro-
duces another innovative aspect, that is a self-determination of

the parameters that characterize its application [36]. However,
the methodology is not generally applicable, because it uses an
objective function extracted from the knowledge context to pro-
vide the best clustering of the dataset.

2.3. Proposed contribution
This paper tackles the challenge of applying anomaly de-

tection algorithms to various types of anomalies while ensur-
ing high interpretability. An Anomaly Detection Framework,
in which two semi-supervised algorithms based on the SGT
extraction process introduced in [5], are combined and ex-
panded to address this issue. The purpose of these algorithms
is on identifying anomalies in historical electricity consump-
tion data, by means of contextual logic with a good accuracy.
The adopted algorithms within the proposed framework fell on
a CART decision tree and a MLP neural network. The de-
cision tree was adopted due to its ability to provide explicit
correlations between inputs and outputs once trained. On the
other hand, the neural network was chosen to explore the com-
plex and non-linear relationships between inputs and outputs.
Although the correlations in the case of the NN may not be
directly extractable and interpretable, it’s more accurate out-
put will allow for the identification of anomalous periods with
greater confidence. The main contributions and novelties of this
paper, compared with our previous work [5], are:

• A further improvement is made to the SAX encoding al-
gorithm through the use of partitive clustering as a means
of fine-tuning the definition of the consumption intervals,
which in turn will result in a more accurate fit with the
dataset.

• A framework is formulated to train anomaly detection al-
gorithms through a semi-supervised approach, which was
consequently applied to a real case study.

• An anomaly detection method based on decision tree, has
been applied. This approach was structured with the ob-
jective of extracting more information than than just the
anomaly notification. In fact, CART allows visualising the
domain of existence of the variables that characterize the
predicted level of consumption and the investigation of the
context of the occurrence of the anomalous behavior.

• A second anomaly detection algorithm, based on a non-
self-regressive NN, is introduced. This approach was cho-
sen as it offers a finer granularity than the SAX-CART ap-
proach.

• The two structured anomaly detection models have been
compared and cooperative strategies necessary for the
combined use of the two models have been identified in
order to include the accuracy of the NN wiht the inter-
pretability of the CART models.

3. Anomaly Detection Framework

This paper proposes an ADF that is based on two semi-
supervised ML techniques, named SAX-CART and SAX-MLP,
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Figure 1: Workflow representation of the proposed Anomaly Detection Frame-
work.

to identify anomalous consumption profiles in the time series of
a building portfolio. The workflow of the methodology is illus-
trated in Fig. 1 and comprises three primary modules: i) Dataset
Preprocessing, ii) Data Reduction, and iii) Anomaly Detection.
The modules are described in the following subsections.

3.1. Data Preprocessing

In order to detect anomalies, the ADF uses certain raw data,
such as the electricity consumption data of buildings collected
at the smart-meter level, information on buildings related to
their final uses and their geographical positions, and meteoro-
logical data related to the building sites. Electricity consump-
tion time series often suffer from several inconsistencies, for
example, they may contain outliers or missing values. For this
reason, the data need to be preprocessed so that they can be
used by the ML algorithms of the ADF.

The Data Preprocessing module consists of three distinct
tasks, that are: Filtering, Clustering and Normalization. The

aim of these tasks is to remove outliers by selecting a uniform
subset of the electricity consumption dataset. This ensures that
the subset is ready for use by subsequent modules.

Consumption data extracted directly from smart meters often
contain some inconsistencies, such as observations character-
ized by out-of-scale consumption. These can be attributed to
errors made during the data collection or to short maintenance
activities. Therefore a Filtering task is introduced to make the
methodology more robust and exclude these types of outliers,
which are characterized by a short duration and high deviation,
as they are irrelevant for the detection of anomalies. During this
process, the historical time series of each building is scanned by
applying a moving window of 15 days’ width, which means 360
observations, and identifying those measurements that deviate
from the mean by more than 1.5 of the standard deviation of
the sample as outliers. If the identified outliers have a dura-
tion of less than 3 hours, the filtered observations are excluded
and subsequently reconstructed by means of linear interpola-
tion. Conversely, if the filtered period lasts longer than 3 hours,
it is considered unprofitable to exclude these observations in the
subsequent analysis. By following this procedure, it is possible
to eliminate statistical anomalies from the dataset. However,
collective anomalies cannot be excluded, and they need to be
further analyzed through the methodology that is presented in
Section 3.3.

The Clustering task groups the homogeneous buildings that
have to be used for the following steps. Homogeneity is defined
by two factors: the final use of the building and its geographic
proximity. Indeed, the amount of energy a building uses is
closely linked to its purpose and the surrounding weather condi-
tions. Therefore, the factors that drive energy consumption and
building systems schedules are often shared among buildings
with similar purposes and weather conditions. Creating homo-
geneous categories to make further inferences is crucial in this
regard. In this case, an ML algorithm and sample checks were
utilized to ensure the correctness of the labelled final uses, fol-
lowing the approach described in [37]. A radius of 15 km was
defined for each available meteorological station to define the
geographical proximity, and it was assumed that the ambient
conditions was constant at each point inside the circle. This is,
of course, a simplification that does not consider specific irreg-
ularities. These aspects are more relevant for some variables,
such as irradiance, due to the presence of clouds or the horizon
shade profile of a building, which can vary significantly within
an area considered homogeneous. Therefore, this information
is excluded from the dataset, and only the temperature and rela-
tive humidity are considered, for which the hypothesis of homo-
geneity has been verified. In fact, if any non-uniform variables
across geographic areas were to be included in the study, the
dataset would be inconsistent. These variables do not reflect
the actual conditions to which each building is subjected and,
therefore, would produce an unequal performance comparison.

After identifying the homogeneous groups, the Normaliza-
tion task is performed to facilitate the comparison of buildings
of various sizes and electricity consumption levels and to adapt
the input data to the ML techniques. The min-max normaliza-
tion type is chosen to maintain the original shape of the con-
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sumption of each building. The normalized power consump-
tion (Pnorm) is calculated through the following mathematical
formulation:

Pnorm(t) =
P(t) − Pmin

Pmax − Pmin
(1)

where P(t) is the power consumption at time t, while the maxi-
mum and minimum power (Pmax and Pmin, respectively) are cal-
culated for each building considering the entire available time
series.

3.2. Data Reduction
The Data Reduction module, shown in Fig. 1, involves four

primary tasks: i) Time Interval Identification, ii) Energy Inter-
val Identification, iii) SAX Transformation, and iv) SAX Opti-
mization.

The aim of the Time Interval Identification task is to represent
the daily load profiles using a variable number of nt time peri-
ods. This task is generally accomplished by dividing the hours
of the day into nt equal time intervals. However, this method
is not always effective since the load profiles may have peri-
ods in which the load varies suddenly and periods in which the
consumption remains constant. To address this issue, a CART
is applied to identify variable-width temporal windows by opti-
mally defining their boundaries, as proposed in [28]. However,
the selection of the number of intervals nt is constrained by the
CART pruning functions. In order to tackle this problem, this
paper proposes to determining the nt intervals in the SAX Op-
timization task through a sensitivity analysis that involves the
entire SAX encoding process.

The Energy Interval Identification task considers each time
split case as input and calculates the mean value of the electric-
ity consumption pattern for all the nt time periods. This task
reduces all the daily consumption patterns to nt mean power
consumption values. The Probability Density Function (PDF)
of the mean values of the homogeneous group is then computed.
Different energy split cases are generated for each time split
case by dividing the PDF into a variable number ne of equally
probable energy intervals. The mean calculation helps to re-
duce the effect of large time intervals that have a constant con-
sumption, which could cause unbalanced weights in the Energy
Interval Identification task. A fair probability of the intervals is
ensured by calculating the quantiles of the dataset population.
This procedure therefore generates balanced energy intervals.
However, to ensure equiprobability, it results that the power in-
tervals are significantly skewed for any data that show distribu-
tions that deviate significantly from a Gaussian-type distribu-
tion. An additional step has been introduced to mitigate this is-
sue, using a k-means algorithm to find a domain subdivision by
minimizing the internal variance of each cluster. The k-means
algorithm is initialized by providing the homogeneous clusters
that were previously identified through quantiles as the starting
clusters. This procedure is crucial as it removes the randomness
of the process and allows the prior subdivision to be optimized
with respect to the variance of the data.

The SAX Transformation task converts each daily load pro-
file into words composed of nt letters using a dictionary of ne

characters, which represent the (nt, ne) combination. Indeed,
the daily load profiles are grouped in a particular word to deter-
mine a cluster.

The SAX Optimization exploits the three aforementioned
tasks to identify the optimal combination of time and energy in-
tervals among the (nt, ne) combinations. After conducting mul-
tiple tests, it was determined that the optimal domain to search
for the ideal combination of (nt, ne) lies within the [3, 7] range.
This ensures an exhaustive search without any unnecessary bur-
den on the optimization process. The optimal combination is
determined by comparing each combination using the Mean In-
dex Adequacy (MIA) index [38] in accordance with the elbow
method. The MIA index expresses the goodness of the clus-
ter (nt, ne) being examined as the average of the intra-cluster
homogeneity, as known as the Within Cluster Sum of Squares
(WCSS). The MIA index is expressed by Equation (2)

MIA =
1

Nk

Nk∑
k=1

WCSSk (2)

where the Nk is the number of clusters corresponding to the
number of different words detected by the SAX. WCSSk is cal-
culated for each cluster k and it is equal to the daily average of
the Euclidean distance of each profile from the cluster centroid,
as expressed in (3)

WCSSk =
1

Ndk

Ndk∑
dk

(
1

24

24∑
t=1

|ck,t − Pdk ,t |
2
)1/2

(3)

where Ndk is the number of days classified by SAX within the
same cluster, i.e. distinguished by the same sequence of letters,
while ck,t and Pdk ,t are the hourly power values of the centroid
of the k-th cluster and the daily load profile, dk, belonging to
the cluster, respectively.

3.3. Anomaly Detection
After defining the optimal combination of time windows and

consumption intervals (nt, ne), the next step is to move on to the
Anomaly Detection module shown in Fig 1. This module in-
cludes a preliminary task, that is, SGT Identification. This task
involves using a purely statistical approach to exclude any pro-
files that are not significant for the structure under examination
from the dataset. SGT is used for the subsequent applications
of the semi-supervised ML approaches to detect anomalies, i.e.,
the SAX-CART and the SAX-MLP algorithms.

3.3.1. Synthetic Ground Truth
The SGT Identification task applies the Pareto principle [39]

to eliminate less significant clusters from the optimal combina-
tion (nt, ne) identified in the previous module. This principle is
commonly adopted for quality analysis in such fields as Total
Quality Management, Six Sigma, and ISO9000 [40]. In this
paper, the methodology developed in a previous work [5] is ex-
tended and included in the proposed ADF. The Pareto principle
has been employed to assess the significance of a load profile.
Therefore, a dataset is ordered on the basis of the recurrence of
the SAX encoding, i.e., the magnitude of each cluster. Indeed,
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20% of the clusters with the most recurrent words are expected
to contain around 80% of the dataset, thus representing signifi-
cant load profiles of the analyzed buildings. On the other hand,
the remaining part of the dataset is distributed over minor clus-
ters, which are sparse and could probably contain anomalous
observations. These infrequent profiles are marked as outliers
and removed from the dataset, as their inclusion in the train-
ing of ML models could worsen the accuracy of the models.
Although this approach yields noticeable results, it suffers from
certain limitations, in terms of defining the occurrence of a con-
sumption anomaly. Nevertheless, it allows somewhat insignif-
icant data to be excluded although it does not provide a robust
definition of the occurrence of consumption anomaly.

The SGT Identification task provides the SAX profiles of
days judged reliable for the semi-supervised training of the
anomaly detection models as output. This output can be used
directly by the SAX-CART algorithm, which was specifically
designed to handle inputs encoded through SAX. The SGT
Identification task can insted be exploited to exclusively extract
the dates of the days belonging to SGT by re-adopting the orig-
inal sampling of the dataset. This second approach is generaliz-
able to various anomaly detection algorithms and was adopted
to train the SAX-MLP algorithm.

3.3.2. SAX-CART
To provide a clear definition of anomalous consumption, the

implementation of the CART algorithm by scikit-learn [41] has
been adopted. This type of ML algorithm provides a substantial
advantage in anomaly detection over other types of approaches,
such as NN. Indeed, although NN often achieves higher accu-
racy values, it does not provide any information about the cor-
relation between the input and output variables, which lead to
a more difficult understanding of the phenomena. CART, on
the other hand, makes the correlations identified between the
dependent and independent variables explicit in a clear and in-
telligible way. The proposed framework adopts a decision tree
that is trained for each time window as a classifier. The model
predicts the level of consumption for each day by identifying
the correct SAX coding. Table 1 reports the input variables
used for the nt trees. The variables are divided into categorical
variables (i.e., Day Type, Seasons, Months) and numeric ones
(i.e., Outdoor Temperature and the Relative Humidity).

Table 1: Input variables used for the CART models.

Type Name Value / Unit

Categorical Day Type 0 Weekdays, 1 Saturdays,
2 Sundays and Holidays

Season 0 Winter, 1 Spring,
2 Summer, 3 Fall

Month [1,12], where 1 represents January
and 12 represents December

Numerical Outdoor Temperature [◦C]
Relative Humidity [%]

The numerical variables are transformed through Piecewise
Aggregate Approximation (PAA) coding. They are averaged
over the same time windows that were identified during the

Time Interval Identification task. The partitioning of the dataset
into a training sample (70%) and a validation sample (30%) en-
sures homogeneity of the two samples as it imposed that the
proportion of symbols remains the same within the two sam-
ples.

A grid search, with cross-validation of the trained models,
is implemented to optimize the selection of the hyperparame-
ters. Table 2 reports the hyperparameters that were tested by
the grid search algorithm. The Criterion defines the objective
function through which the model is trained. The objective
functions that were tested for this type of analysis were the gini
and entropy indexes. The Class weight hyperparameter modi-
fies the calculation of the objective function, particularly when
it is set to ”balanced”, thereby allowing the SAX symbols to
be weighted according to their probability of occurrence. In
this way, single errors made for less frequent classes are penal-
ized more, which sometimes leads to a better balance in the tree
structure. Conversely, in strongly unbalanced cases, if the ”bal-
anced” parameter were not adopted, the tree algorithm could re-
sult in the misclassification of less densely populated consump-
tion classes. In other words, the rarest classes would never be
predicted at any leaf node and would therefore be incorrectly
classified as anomalies. The remaining three hyperparameters
tested do not modify the tree structure but do contribute to tree
pruning. The max depth and min impurity decrease parameters
define the maximum number of tree subdivisions and the min-
imum value of the Gini, or of the Entropy, index improvement
following a split, respectively. The CCP-α parameter or Cost
Complexity Pruning, which is similar to min impurity decrease,
limits the introduction of a new split to those that exceed a min-
imum improvement value of the objective function. However,
in the case of CCP-α, the improvement will not be made in ab-
solute terms but weighed according to the complexity reached
by the tree, i.e., the number of leaf nodes.

Table 2: Hyperparameters tested for The CART optimization

Hyperparameter Tested value

Criterion [gini, entropy]
Class weight [None, balanced]
Max depth [2, 3, 4, 5, 6]
Min impurity decrease [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
CCP-α [0.1, 0.15, 0.2, ..., 0.4, 0.45, 0.5]

Once the tuning of the model parameters has been performed,
a robust tool that is capable of identifying the level of consump-
tion within each time window is obtained. However, the accu-
racy of the model predictions is not linked directly to its ability
to detect anomalies. In fact, any level of consumption that dif-
fers from the one predicted by the leaf node is not necessarily
defined as anomalous, because this condition would be overly
strict in many cases. Conversely, anomalous consumption lev-
els are defined as those that occur with a frequency of less than
20% within a leaf node, on the basis of specific boundary condi-
tions. This approach allows anomalies to be defined according
to the context in which they are detected.
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3.3.3. SAX-MLP
The second approach used to detect abnormal consumptions

exploits the effectiveness of Multiple Layer Perceptron MLP
algorithms to estimate electricity consumption through exoge-
nous variables. In particular, the MLP algorithm developed by
scikit-learn [41] has been adopted. In order to combine the re-
sults of the two ML approaches, the inputs provided to the MLP
algorithm are the same as those provided to the previously de-
scribed SAX-CART algorithm. The only additional variable
provided to MLP is the time of day. However, it can be ob-
served that this variable was also used intrinsically in the SAX-
CART methodology to identify the SAX time windows. The
input data to the NN are preprocessed on the basis of the data
type, distinguishing between categorical data, such as the day
of the week and month, and numerical data. Categorical data
cannot be directly introduced into an NN, and the one-hot en-
coding technique is therfore used. Numerical data are standard-
ized through a z-score transformation to improve the stability
of the model at different input variable scales.

The anomalies in the SAX-MLP approach are defined on
the basis of the assumption that the algorithm makes more
pronounced errors in estimating anomalous consumptions than
normal consumption. The definition of anomalies through this
assumption is further supported by the fact that, during learn-
ing, the NN is exposed exclusively to the dataset extracted by
means of the ground-truth identification process [22]. All the
observations for which the NN commits a larger error than 3
times the standard deviation obtained by the model during the
training phase are considered anomalous [17], as expressed in
Equation (4)

∆ = max(0, |Y − Ŷ | − 3σ) (4)

where ∆ is the score of the anomaly, Y is the electricity con-
sumption recorded by the meter, Ŷ is the electricity consump-
tion estimated by the NN, and σ is the standard deviation of the
errors (Y − Ŷ) made by the model on the training dataset. This
formulation makes it possible to exploit the predictions of the
NN to detect the occurrence of abnormal consumptions.

The proposed SAX-MLP algorithm exploits a simple NN
topology that is based on two hidden layers. Various hyper-
parameters were tested to identify an optimal configuration of
the NN, as reported in Table 3.

The loss function is the function by which the model is eval-
uated and it influences the optimization algorithm by assigning
values to the weights and biases. The loss function adopted is
the Mean Squared Error. The reason for selecting this function
was to highlight how sensitive the algorithm is to significant
point errors. This approach is necessary to create a model that
can accurately depict the dynamic nature of the real system.
The used optimization algorithm is Adam, which uses the gra-
dient calculation of the loss function to find the minimum point
along its slope. The batch size parameter determines the num-
ber of elements after which the loss function is calculated and
the weights and biases of the network are updated. This is a
fundamental parameter that affects the learning time and stabil-
ity of the network results to a great extent. The learning rate

Table 3: Hyperparameter tested for the MLP optimization

Hyperparameters Tested value

Loss function MSE
Optimizer adam
Initialization mode uniform
Activation ReLu
Decay [0, 1e-6, 1e-5, 1e-4, 1e-3]
Dropout rate [0.0, 0.1, 0.12, 0.14, 0.2]
Learning rate [0.0001, 0.001, 0.01, 0.1, 0.3]
Neurons HL1 [26, 50, 100, 150]
Neurons HL2 [25, 45, 65]
Batch size [24, 168]

represents the percentage of weights that are updated at each
epoch. When the learning rate value is low, the learning pro-
cess slows down, which means it requires more epochs for the
problem to reach convergence. On the other hand, if this pa-
rameter has high values, the model may converge quickly, but it
could lead to low-quality solutions due to the presence of local
minima. Finally, the decay hyperparameter is closely related to
the Learning Rate (LR), as it modifies the latter by updating it
after each epoch e through Equation (5)

LR = LRe=0 ∗
1

1 + Decay ∗ e
(5)

Therefore, high learning rates are permitted during the initial
epochs, and this allows a faster learning. However, lower learn-
ing rates are also possible in the final learning stages, and these
result in better refinement. The drop-out parameter is intro-
duced to encourage the NN to adopt low values for the weights
of each connection, thereby avoiding overfitting the dataset. A
percentage of neurons that is equal to the parameter value is
randomly excluded during each epoch through this parameter.
This practice prevents a neuron from acquiring excessive im-
portance within the network and makes learning more diffused.
Finally, the HL1 and HL2 parameter Neurons establish the dif-
ferent combinations of the number of neurons between the two
hidden layers.

The dataset is split by respecting the proportions used for
training (70%) and for testing (30%) . The two samples are
split in a semi-random manner by imposing that the two sam-
ples are balanced with respect to the months to which the ob-
servations belong. This expediency reduces the risk of inducing
seasonality-related bias into the model. All the possible combi-
nations of the hyperparameters listed in Table 3 were tested by
applying the cross-validation. The latter was achieved by divid-
ing the training dataset into three folders and using two folders
alternately for model training and one for testing. The optimal
combination of hyperparameters was defined on the basis of the
Mean Absolute Percentage Error (MAPE) calculated from the
three splits of the designated test folder.
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4. Experimental Results and Analysis

The proposed Anomaly Detection Framework (ADF) has
been applied to a real case study of around 1, 000 buildings
distributed throughout the Italian territory from the national
TLC provider. The dataset consists of a collection of records
taken from smart meters at an hourly resolution. Moreover, the
dataset contains a unique identifier for each building, the final
use (e.g., Central Office (CO), data center, radio base stations
or offices), and the geographic location. It is worth noting that
the data were all anonymized to preserve private and confiden-
tial information about the TLC provider, due to the presence
of NDA. Therefore, all the identifiers were masked, and the
consumption profiles were normalized. In order to present the
dataset, within the limits of NDA agreements, the following
statistical parameters were reported. The mean value of nor-
malized annual consumption 0.289 suggested that, on average,
the CO exhibits relatively low consumption levels. This can be
attributed to two main factors: limited full load operation hours
of the power plants and the distribution of power plant sizes
within the population. The median value of 0.192 is noticeably
lower than the mean, indicating an asymmetrical distribution to-
wards lower consumption values. This suggested that a signifi-
cant proportion of power plants had consumption levels below
the mean, contributing to the skewness of the distribution. The
first percentile (Q1) value of 0.0744 was significantly closer to
the median than the third percentile (Q3) value of 0.506. This
further confirmed the asymmetry in the consumption distribu-
tion, with a larger spread of power plants falling between the
median and the third quartile compared to those with the low-
est consumption. The dataset presented was accompanied by a
meteorological dataset, which included hourly data on the tem-
perature and, relative humidity, was also used.

As described in Section 3, and depicted in Fig. 1, the first
step of the ADF involves the Data Preprocessing module,
which performs the filtering, clustering and normalization of
the dataset. Fig. 2 depicts the typical point anomalies identified
in the dataset. After conducting further investigations and con-
sulting domain experts, two primary reasonswere identified for
these anomalies: i) scheduled maintenance interventions and
ii) errors in the hourly power accounting. The conducted veri-
fications confirmedthat the filtering task led to the expected re-
sults, which means that any anomalies that were representative
of a malfunctioning of the systems were not excluded from the
analysis. Fig. 2 (a) shows a typical case of anomalies related to
the data acquisition system. An anomaly related to scheduled
maintenance is shown in Fig. 2 (b), which is characterized by a
specific shape that indicates a sudden reduction and an increase
in load over intervals of a maximum of three hours. These types
of anomalies do not constitute opportunities for energy savings
or energy management optimization, and they were therefore
deemed of little interest for the subsequent analyses and conse-
quently excluded from the dataset.

The dataset was clustered to identify several building groups
to which the anomaly detection process was applied. A total of
160 homogeneous building groups were identified on the basis
of their geographical location and the final use of the building.

Figure 2: Examples of typical outliers identified through the Filtering task of
the Data Preprocessing module.

For the sake of simplicity, the following analyses focuses on
only of those clusters, which consists of 6 COs in the area of
Turin. Fig. 3 shows carpet plots of the normalized hourly load
profiles of the selected building group. These plots provide a
concise representation of the entire dataset, and highlight typi-
cal seasonal trends, such as the effect of cooling loads on sum-
mer days, which increase the load consumption patterns from
about 12 to 19. Looking at the consumption graphs of these
buildings as a whole, it can be seen that they show the same be-
haviour in the months from June to September. In other words,
it can be observed that the peak energy demand for the six build-
ings occurs on the same days in June and August. It can be seen,
when comparing the buildings, that the consumption patterns
instead vary more during the colder months. Buildings 2 and 5,
unlike the other buildings in the cluster, do not show a low level
of consumption during the months of January to April, and in-
stead maintain an intermediate level of consumption. This may
be a first sign of the possibility of an improvement in the man-
agement of the two buildings.

The Data Reduction module involves SAX optimization,
which is achieved by testing different time and energy inter-
vals to identify the optimal combination (nt, ne) of the SAX en-
coding. As detailed in Section 3, the MIA index is calculated
for each combination. Therefore, the resulting matrix of MIA
indices, which is depicted in Fig. 4 as a three-dimensional his-
togram, is thus obtained. The optimal combination is obtained
from the elbow point identification of the MIA matrix, which
results in (4, 4) the best time and energy interval parameter con-
figuration.

For the sake of clarity, the following two paragraphs only
report the procedure used to obtain the SAX encoding of the
identified optimal combination (4, 4):

• The Time Interval Identification task identifies four-time
intervals, i.e., [00-09], [10-11], [12-19], [20-23] consider-
ing the 24-hour clock system, by exploiting a CART algo-
rithm implementation. At the end of the task, the load pro-
files are reduced in size by calculating the average power
consumption for each identified time window. In this way,
each daily observation is no longer composed of 24 vari-
ables but only of 4 mean energy consumption values. The
resulting segmentation effectively characterizes the con-
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Figure 3: Carpet plot representation of the selected homogeneous group of six COs. The color scale shows the power consumption of each CO.

Figure 4: Graphical representation of the MIA matrix considering the different
combinations (nt , ne).

sumption pattern of a CO. The first time interval corre-
sponds to a low consumption range. The next window [10-
11] identifies a period of sudden load variations, which is
commonly called system rump-up. The central time inter-
val [12-19] represents the period of maximum consump-
tion of the CO. Finally, the [20-23] window represents the
period in which the consumption settles at low levels.

• The Energy Interval Identification task identifies four
equiprobable power intervals, as reported in Fig. 5(a). It

can be noted that the distribution of the power sampling
is markedly unbalanced toward low values. Therefore, the
energy intervals are denser for low values and sparser for
high consumption values. This aspect represents a weak
output to be used for SAX transformation, as it could lead
to inadequately detailed the high consumption intervals.
A k-means division of the domain is adopted to avoid this
type of coding weakness. The new subdivision of the do-
main, as depicted in Fig. 5(b), shows more balanced inter-
vals. It can be observed that the high consumption inter-
val has been reduced by almost a third, while the low and
medium-high consumption intervals have been increased,
accordingly.

A comprehensive graphical representation of the information
that can be extracted from the selected SAX encoding is illus-
trated in Fig. 6. The figure depicts a Sankey chart that show
the sequential generation of the load profiles obtained through
concatenation of the symbols of each time window. Each block
represents a time window and reports two types of information:
the consumption level and the number of days described by the
same code. The consumption level of the considered window
can be deduced either through color code of the block or by
considering the last letter of the code placed next to each block.
The number of load profiles belonging to each block can insted
be deduced by considering the thickness of each block or path
connecting two blocks. Moreover, Fig. 6 shows the carpet graph
of the load profiles for each of the 57 letter sequences identified
by the SAX codes of the homogeneous building cluster. By
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Figure 5: Graphical representation of the Probability Density Function (PDF)
of the population of power demand values averaged over the time windows. (a)
shows the equiprobable subdivision while (b) shows the domain subdivision
obtained through the application of k-means.

analyzing the carpet plot, it is possible to see that the most sig-
nificant cluster, i.e., the densely populated ones, report consis-
tent information. This shows that the SAX encoding process is
able to preserve the most relevant information of the analyzed
load profiles. Moreover, it is possible to see that each cluster
presents consistent load profiles. Furthermore, it is also possi-
ble to notice differences between the clusters. This is particular
evident when looking at the clusters related to high consump-
tion, e.g., the days coded as ’CCDD’ differ considerably from
those described by the ’CDDD’ term, although only the second
letter between the two codings varies. It is also worth noting
that the first cluster, ’AAAA’, shows some behaviors that could
be presented in more detail, thus representing a constraint of the
proposed approach. This aspect is related to a trade-off in the
representation of the SAX. However, it is necessary to accept
this inaccuracy in order to achieve a codification that general-
izes building behavior and which is not overly specific. How-
ever,cataloguing the different consumption patterns of buildings
in a reduced set would in fact be unattainable.

Once the SAX codingof the data set has been obtained, the
Anomaly Detection analysis is conducted. First, the SGT from
the historical consumption series is obtained. The results of this
process can already be observed in Fig. 6, where it can in fact
be seen that all the paths are separated into two groups: the
SGT and the filtered data. The Pareto diagram is represented in
Fig. 7 to explicate the details of the procedure.

The Pareto diagram shows the daily encodings for each of
the 57 resulting words on the x-axis, ordered according to the
recurrence of each code within the dataset. The recurrence of
each word is reported quantitatively on the left axis. The right
axis shows the cumulative percentage of the selected words.
The 13 most recurrent symbols, which account for around 20%
of the 57 identified words, represent approximately 80% of the

Figure 6: Sankey chart of the SAX encoding. Each day is represented in the
graph by the sequence of symbols assigned to it for each time window. The
thickness of each path is related to the number of days belonging to such a
pat. The figure also reports, for each path, the carpet graph of the consumption
profile. The SGT is obtained by following the Pareto principle.

dataset. The remaining part of the dataset (20%) is instead rep-
resented by 45 different symbols. Consequently, the dispersion
of this part of the dataset poses a learning challenge to to the
ML algorithms, which may lead to a deterioration of their per-
formance.

Taking advantage of the results obtained so far, it is possible
to extend the applications of the SAX coding from the definition
of SGT to the detection of anomalies, as described in Section 3,
through the application of semi-supervised ML algorithms. The
training results of the two SAX-CART and SAX-MLP algo-
rithms are presented in the following paragraphs. The outputs
of the two anomaly detection algorithms are compared using
the carpet plots outlined in Section 4.1.

Since the optimal number of time windows in the SAX-
CART application is four, an equal number of decision trees
was initialized, and a grid search with cross-validation was per-
formed for each of them. The results of the grid search are
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Figure 7: Pareto diagram of the resulting (4, 4) Clustering step.

reported in Table 4, where the optimal hyperparameters iden-
tified through grid search and the Key Performance Indicators
(KPIs) achieved for each time window are shown. It is possible
to compare the accuracy values achieved for the three different
split tests, as described in Section 3.3.2, and also the mean and
standard deviation values calculated for them.

The average prediction accuracy over the four time windows
is 80.9 %. Any anomalous periods can be identified on the basis
of this result. For example, the CART obtained for the second
time window [10-11], is depicted in Fig. 8. In this case, five
leaf nodes can be identified, which are analyzed from left to
right. The first leaf node belongs to days characterized by an
average temperature that is less than or equal to 14.4 ◦C. Ac-
cording to the results obtained from CART, consumption levels
A and B within this category can be considered acceptable as
they exceed the support threshold of 20 %. These levels are
therefore deemed normal under these specific circumstances.
On the other hand, consumption level C is only expected with a
probability of 7 %, and can therefore be considered anomalous
in these particular circumstances, as can the consumption level
D. The second leaf node is defined by a higher external tem-
perature than 14.4 ◦C and for the days of the months between
January and May. Again, two consumption levels (B and C)
are identified as normal. What was done for the two previously
described leaf nodes can now be extended to all the leaf nodes
and all the trees, and this allows all the different scenarios to
be mapped. Therefore, by exploiting the identified rules, it is
possible to distinguish any abnormal consumption from normal
consumption.

As far as the SAX-MLP application is concerned, the NN
was trained following a similar methodology to what had previ-
ously been used for CART. The optimal parameters for the net-
work were defined through a grid search, the domain of which
is explicitly stated in Section 3. Table 5 reports the hyperpa-
rameters and KPIs that were tested for the different configu-
rations. The optimal configuration is the one with the lowest
mean MAPE, which is equal to 14.49 %. Finally, the anomaly
score can be calculated from the optimal configuration using

Figure 8: Graphical representation of the CART obtained for the [10-11] time
window.

Equation (4).

4.1. Anomaly Detection analysis
If only the performance indices of the two models are com-

pared, it could be argued that the performance of the SAX-
MLP exceeds that of the SAX-CART approach. However, the
score obtained when predicting consumption is not completely
indicative of the performance of the same model in defining
anomalous behavior. In fact, it should be pointed out that the
ultimate goal of the analysis was not to obtain an accurate con-
sumption estimation but was rather the dual task of identify-
ing anomalies and supporting energy managers in verifying the
authenticity of an alarm by combining both approaches. For
this reason, the first characteristic that should be evaluated for
the two models is the type of output they provide. The NN-
based method only provides the distance between the prediction
and the actual consumption value, whereas the SAX-CART ap-
proach not only provides a warning about possible anomalies
and the most likely consumption level for a specific condition,
but also the variables that appear for the drivers that best charac-
terize a given context. This latter aspect is undoubtedly helpful
for those stakeholders who want to identify the incidents that
have triggered a specific outlier.

The analysis carried out for CO 2 is reported as an example
of the application of the developed ADF. The anomaly detec-
tion analysis was conducted for the year following the one used
for model training. Fig. 9 depicts four carpet plots that that
depict, from left to right: i) the external temperature, which
represent the primary consumption driver, ii) the normalized
consumption demand, iii) the anomaly score defined by means
of SAX-MLP, and iv) the identified anomalies extracted from
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Table 4: Result of the top 5 combinations of the hyperparameters tested through a grid search for the CART models applied in the SAX-CART algorithm

CART
Hyperparameters KPIs

CCP-α
Class

weight Criterion
Max
depth

Min impurity
decrease

Split0
accuracy

Split1
accuracy

Split2
accuracy

Mean
accuracy ▽

Std
accuracy

CART 1
[00 - 09]

0 balanced entropy 4 0.05 0.871 0.859 0.918 0.882 0.025
0 None entropy 4 0.05 0.871 0.882 0.871 0.875 0.006

0.35 None entropy 3 0.15 0.871 0.871 0.859 0.867 0.006
0.25 None entropy 3 0.1 0.871 0.871 0.847 0.863 0.011
0.05 None gini 5 0.05 0.859 0.871 0.847 0.859 0.01

CART 2
[10 - 11]

0 None entropy 5 0.05 0.718 0.765 0.776 0.753 0.025
0.1 balanced entropy 4 0.05 0.753 0.765 0.729 0.749 0.015

0.05 balanced entropy 4 0.1 0.753 0.765 0.718 0.745 0.02
0.05 None gini 2 0.05 0.682 0.753 0.788 0.741 0.044

0 balanced entropy 2 0.05 0.718 0.753 0.718 0.729 0.017

CART 3
[12 - 19]

0 None gini 2 0.05 0.847 0.847 0.8 0.831 0.022
0.05 None entropy 5 0.05 0.824 0.824 0.776 0.808 0.022
0.05 balanced entropy 4 0.15 0.859 0.776 0.765 0.8 0.042
0.05 balanced gini 2 0.05 0.859 0.741 0.765 0.788 0.051

0 balanced gini 3 0.05 0.835 0.741 0.776 0.784 0.039

CART 4
[20 - 23]

0.2 balanced entropy 4 0.15 0.812 0.776 0.729 0.773 0.034
0.05 balanced gini 2 0.1 0.788 0.776 0.729 0.765 0.025
0.2 None entropy 4 0.25 0.776 0.741 0.765 0.761 0.015
0 None gini 2 0.05 0.765 0.741 0.765 0.757 0.011
0 None entropy 5 0.05 0.788 0.718 0.753 0.753 0.029

Table 5: Result of the top 5 combinations of the hyperparameters tested through a grid search for the MLP models.

Hyperparameters KPIs

Decay
Dropout

rate
Learning

rate
Ns

HL1
Ns

HL2
Batch
size

Split0
MAPE

Split1
MAPE

Split2
MAPE

Mean
MAPE △

Std
MAPE

Mean
fit time

0.001 0 0.3 150 45 24 14.99 14.19 14.29 14.49 0.4 114
0 0 0.001 150 45 24 14.17 14.94 14.45 14.52 0.3 140

1.00E-06 0 0.1 150 45 24 14.83 13.91 14.84 14.52 0.4 138
1.00E-05 0 0.0001 150 45 24 15 14.32 14.4 14.57 0.3 131

0.001 0 0.001 150 45 24 14.02 15.61 14.19 14.61 0.7 114

SAX-CART. When the two methods used to define anomalies
are analyzed, the presence of more noise in SAX-MLP is im-
mediately evident, which indicates thatseveral individual hours
are anomalous. Instead, the output derived from SAX-CART
appears more defined. However, even in this case, there are
some warnings that do not correspond to actual anomalies but
instead refer to biases related to the encoding of the leaf nodes
for which conditions very close to existence domain of a leaf
node can lead to a misclassification. However, these types of
errors are easily verifiable and bypassable thanks to the inter-
pretability of the tree rules.

The period with the largest number of anomalies identified by
both algorithms covers the period from the last days of March
to the first half of April, as depicted in Fig. 9. In this period, it
can be noted that the consumption does not follow the load pro-
files that are typical of those specific temperatures. This type of
information can be deduced through the SAX-CART approach,

which allows the most significant variables to be clearly high-
lighted in order to define a specific context. For example, by
analyzing one of the days marked as abnormal by both models,
i.e., 03/29, it is possible to interpret the causes that produced the
alarms in the [00-09] and [20-23] time windows. Table 6 can be
used to support analysts as it shows the main outputs that can
be obtained from the application of SAX-CART. According to
Table 6, the SAX reports a high average consumption level,
which has the symbol C, for both of the indicated windows, i.e.
with an anomaly score equal to one. If we consider the [00-09]
time window, the rules obtained from SAX-CART suggest that,
the most probable consumption level for temperature levels be-
low 10 ◦C is the lowest one, i.e., symbol A. This estimate is
supported by 80 % of the trained dataset. Therefore, the actual
consumption level recorded (symbol C) may not be related to
the external temperature, and the algorithm targets it as anoma-
lous. On the other hand, only SAX-MLP identifies anomalous
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Figure 9: Carpet plot representation of the External Temperature, Normalized Power Consumption, and the Anomaly Scores for the SAX-MLP and SAX-CART
models regarding the building CO 2.

behaviors on the days 07/03 and 07/07, which SAX-CART does
not identify. This inaccuracy is not due to an error of the CART
process, but is instead a feature related to the implementation
of theSAX encoding, for which the maximum power interval
is still too wide, even after applying k-means, as almost 40%
of the existence domain of the normalized power variable is in-
cluded within this interval. In conclusion, the combined use of
these approaches allows the limitations of SAX-CART, pertain-
ing to the accuracy of anomaly detection, to be overcome, and
vice versa, it extends the information obtained from the SAX-
MLP approach. Indeed, even in cases where the SAX-CART
approach fails to identify anomalous behavior, it can still pro-
vide information about which drivers are the most significant
for the particular case under examination. In summary, the con-
ducted study has successfully identified anomalous behaviors
within the historical consumption series of a CO, highlighting
instances of excessive consumption compared to climatic and
temporal conditions. While the level of detail attained may not
precisely pinpoint the origin of the anomaly, it does allow for
the formulation of initial hypotheses on the operating state of
the air-conditioning system.

5. Conclusion

This work proposes an Anomaly Detection Framework that
is based on two complementary semi-supervised machine-
learning approaches which can be used for building electric-
ity consumption data. The aim of both approaches is to de-
tect contextual anomalies and they attain this goal through the

Table 6: SAX-CART output related to day 03/29 to support the analysis of the
detected anomalies. Abbreviation: DT (Day Type), M (Month), S (Season), T
(Temperature), RH (Relative Humidity)

Cart
Window

Anomaly
Score SAX

SAX-CART Inputs
CART

Symbol Prob. [%] CART
RulesDT M S T [°C] RH [%] A B C D

[00 - 09] 1 C 0 3 1 7.9 63 80 20 0 0 T < 10

[10 - 11] 0 C 0 3 1 15.5 39 7 52 41 0
14.4 < T ≤ 22.2

M ≤ 5

[12 - 19] 0 C 0 3 1 16.7 35 6 55 39 0
13.6 < T ≤ 18.7

M ≤ 6

[20 - 23] 1 C 0 3 1 13.5 44 72 28 0 0
5 < T ≤ 16.8

M ≤ 5

adoption of non-autoregressive algorithms. In this study, em-
phasis is placed on the type of output that the algorithms re-
turn to the end user, as the interpretability of anomaly detec-
tion is fundamental. These types of algorithms are often used
in information systems, and the intelligibility of the outputs is
therefore crucial to fully exploit them. The application of the
framework defined in Section 3 allowed for the identification
of anomalous consumption occurrences in the historical series
of a CO, validating the effectiveness of the method for the spe-
cific case study. However, this same application also revealed
the main limitations of the methodology. The approach de-
fined as SAX-CART can lead to both false alarms and missed
alarms, which is why it was complemented with the SAX-MLP
method, that provides higher accuracy. Nonetheless, excluding
the SAX-CART method from the monitoring system is not a
viable choice, as it is crucial for verifying the typical behav-
ior of the power plant under certain conditions. Therefore, it
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is believed that the greatest benefits can be achieved through a
combined approach of both methodologies. By comparing the
results from both methods, one can quickly determines which
alarms are unequivocally false positives and which ones require
further investigation. The integration of both methods allows
for a more efficient and effective monitoring system. In con-
clusion, it is deemed that the best approach involves the use
of both methodologies together, as it provides a more compre-
hensive understanding of the system’s behavior. Furthermore it
helps to improve the accuracy of anomaly detection while re-
taining the ability to assess the power plant’s typical behavior
easily and effectively.

Future work will be directed toward attempt to validate the
identified techniques by using them in the field and evaluating
the alarms provided by the algorithms, in order to be able to
detect the presence of false alarms and consequently identify
and test possible improvements to the tested algorithms.
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