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A B S T R A C T

Energy Signatures (ES) are highly informative gray-box regression models. Thanks to their simplicity and
interpretability, to their data-driven approach, and to their effectiveness in describing a building response to
external weather variables, they are employed for (i) the determination of the Balance Point (BP) temperature
of a building, (ii) the ranking of the efficiency of heating or cooling systems, (iii) the provision of building
diagnostic information, and (iv) the development of strategies for more energy-efficient buildings and the
estimation of potential savings. In this work, we propose an innovative energy audit tool, based on a Feed-
Forward Neural Network (NN) to determine ES from aggregated (meter-level) electric load profiles of buildings.
Multiple NN-based regression models are defined for each building and compared to provide the most accurate
and informative one, by considering proper fit and significance indexes. This allows the eventual existence
of multiple cooling regimes to be detected. Moreover, the energy audit methodology defines and applies
an innovative Key Performance Indicator (KPI), called Temperature Unstandardized Beta Weight (𝛽∗𝑇 𝑒𝑚𝑝), to
account not only for the thermal behavior of buildings but also for the efficiency of the conditioning system
and the internal heat generation. This ES approach has been applied to a dataset of electric consumption
patterns from about eighty industrial buildings from a telecommunication (TLC) service provider in Italy. The
useful outputs from the proposed methodology, together with its simplicity, effectiveness and applicability,
are intended to support the diffused understanding of the thermal behavior of buildings and the analysis of
their inefficiencies, in order to enhance energy retrofit actions and reduce consumption.
1. Introduction

In recent years, building energy efficiency has been among the
most topical issues of the energy research community [1]. However,
many obstacles hinder the pathway toward a more environmentally
sustainable way of consuming energy in buildings, such as the lack of
awareness about their energy behavior and its related inefficiencies.
Although making a minor contribution to the final demand of the
building sector as late as a few decades ago, the fast-growing power
consumption from space cooling has now become a major concern. In-
deed, it represents 18.5% of the total electrical demand from buildings
worldwide [2]. Despite the rise in efficiency in cooling systems and the
buildings’ energy footprint reduction policies, this component of their
energy consumption has more than tripled over the last thirty years,
and it continues to grow relentlessly.

∗ Corresponding author.
E-mail addresses: simone.eiraudo@polito.it (S. Eiraudo), danielesalvatore.schiera@polito.it (D.S. Schiera), lorenzo.mascali@polito.it (L. Mascali),

luca.barbierato@polito.it (L. Barbierato), roberta.giannantonio@telecomitalia.it (R. Giannantonio), edoardo.patti@polito.it (E. Patti),
lorenzo.bottaccioli@polito.it (L. Bottaccioli), andrea.lanzini@polito.it (A. Lanzini).

The way forward to enhance awareness of the thermal behavior of
buildings and identify their inefficiencies, such as those pertaining to
cooling loads, is to provide practical tools for the application of build-
ing energy footprint analysis and evaluation. Classic physical models
are widely adopted for the performance assessment of buildings [3].
These models, the so-called white-box models, enhance the analysis
of cause-and-effect relationships and provide retrofit and renovation
scenarios [4]. Vargas et al. [5], for instance, took advantage of the
EnergyPlus simulation engine to estimate the energy-saving potentials
associated with different energy efficiency actions. However, these
methods require extensive information regarding the building struc-
ture, such as its thermal layout, its operation and occupancy schedules,
etc. Other approaches are data-driven ones, namely black-box models,
which are becoming more and more popular s they offer the possibility
vailable online 3 November 2023
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Acronyms

BP Balance Point
COP Coefficient of Performance
DC Data Center
EP Elbow Point
ES Energy Signature
HVAC Heating, Ventilation and Air Conditioning
KPI Key Performance Indicator
ML Machine Learning
MLP Multi-Layer Perceptron
NN Neural Network
ReLU Rectifier Linear Unit
RMSE Root Mean Squared Error
TLC Telecommunication
UPS Uninterruptible Power Supply

of covering a wider spectrum of building analysis. These approaches
require lower computational and modeling efforts and, in particular,
they do not require information about the thermal layout of build-
ings. However, even without this fundamental information, they are
able to provide accurate results and enhance the understanding and
performance analysis of heating and cooling systems. In this context,
Hwang et al. [6] employed Machine Learning (ML) to determine the
most adequate time intervals for predicting the energy performance of
educational buildings. The outcome of their analysis aimed to support
the choice of an optimal heating and cooling control strategy.

Gassar et al. [7] highlighted the advantages and shortcomings of
white and black-boxes, and stressed that hybrid approaches (i.e. gray-
box models) may represent an effective alternative to analyze large
dataset for building energy prediction applications. Hybrid approaches
can be used to overcome the limits of the previous methods as they
join the interpretability of the models with the employment of a data-
driven approach, thereby enhancing the development of very accurate
energy prediction models. Asaee et al. for instance, employed a hybrid
approach in [8] to exploit the combined strengths of engineering
modeling and a NN to estimate the end-use energy consumption within
buildings, including lighting, heating, and space cooling.

Among the building energy audit techniques, Energy Signatures
(ES) are gray-box data-driven approaches that can be used to point
out the dependence of heating or cooling energy consumption on the
weather conditions [9]. ES are temperature-at-use regression models,
whose results are more appropriate for buildings’ energy consumption
analysis with respect to those approaches focusing solely on temporal
patterns. ES could provide highly informative outcomes by enhancing
the extraction of the qualitative characteristics of buildings [10]. The
simplest case of ES is the univariate regression model that consid-
ers only outdoor air temperature and energy consumption. Another
solution that can be adopted to improve the model accuracy of ES
is that of applying multivariate models which can be designed to
analyze the impact of other weather variables, such as solar radiation.
This approach was adopted in [11], where Tronchin et al. employed
linear multivariate ES to obtain parameters from the regression model
that described the thermal behavior of buildings, considering different
weather variables (i.e. temperature, global solar radiation).

Furthermore, both linear and non-linear regression models can be
employed in ES. In [12], a linear regression model was employed
in order to analyze the total heat loss coefficients of thousands of
Italian buildings. Nageler et al. [4] instead applied a non-linear ES
regression model, specifically a sigmoid one, to enhance the accuracy
of energy audits. They validated their model on a case study consisting
of residential buildings and an office, obtaining slight deviations from
2

the real values.
Besides their widespread usage in residential buildings, in the last
few decades, ES have also been adopted for commercial and indus-
trial purposes (i) to rank the efficiency of buildings heating systems
[12], (ii) to produce diagnostic information, benchmarks, and control
charts [13], (iii) to characterize buildings, with the aim of planning
building energy retrofit actions [14], and (iv) to calculate the Balance
Point (BP) temperature of buildings [15]. The latter represents the out-
door air temperature that determines a thermal load equal to zero, that
is, the weather condition at which the building does not require heating
or cooling in order to keep the indoor air temperature within a given
range. In turn, computing the BP of a structure provides crucial infor-
mation about the building envelope and its thermal behavior. For this
reason, BP has been exploited by researchers to analyze the potential
of ventilative cooling [16] and to enhance the accurate estimation of
degree days in order to support effective building-energy policies [17]
and to predict the energy consumption of Heating, Ventilation and Air
Conditioning (HVAC) systems [18].

Most of the existing model-based approaches to calculating BP are
somewhat challenging and time-consuming methodologies [13,19]. For
these reasons, in this paper, we propose a novel energy audit method-
ology that exploits Feed-Forward NN to accurately and automatically
determine the ES of buildings from the aggregated load consumption
profile. Unlike most of the works that deal with ES, our methodology
allows meter-level electric consumption measurement to be used in-
stead of the heating or cooling systems measurements, thereby avoiding
the intrusive installations of sensors for the metering of disaggregated
loads. On the one hand, this represents an element of complexity,
concerning the accurate determination of the ES of a building. On
the other hand, the non-intrusiveness of the proposed methodology
represents a major advantage to apply it to real case scenarios, as many
buildings are not provided with adequate sensors for disaggregated
load metering purposes. Moreover, this methodology applies a robust
and simple model that allows the BP and performance of a cooling
system to be estimated by means of the Temperature Unstandardized
Beta Weight (𝛽∗𝑇 𝑒𝑚𝑝), a KPI that takes into account both Total Heat Loss
Coefficient and the Coefficient of Performance (COP) of the cooling
system. The aim of this work has been to make novel contributions
to both the tools employed for ES analysis and to the proposed energy
KPI. Furthermore, this methodology can be used to enhance: (i) the
detection of inefficient sites, by means of a comparison of buildings
with a similar usage category, (ii) the identification of abnormal power
consumption with regard to the response of a building to outdoor
weather variables, and (iii) the estimation of the best strategies for
energy efficiency of buildings, that is, providing retrofit scenarios. With
respect to our previous work [20], the key contributions and novelties
proposed in this manuscript can be summarized as follows:

1. A generalized form of the thermal balances and of the proposed
methodological framework is presented. The proposed ES ap-
proach can be employed for all those buildings that are provided
with electric air conditioners (i.e., compression chillers, heat
pumps, etc.). This new approach, With respect to the short-
comings of the approaches in the literature and to the aim of
widespread energy audit techniques, is intended to enhance the
application of ES by only considering aggregated load consump-
tion data and the outdoor temperature;

2. Several NN-based regression models are applied to the whole
dataset to detect the eventual presence of multiple cooling
regimes. These multiple operative regions depict different re-
sponses to the thermal load. Hence, the methodology allows the
energy KPI (e.g. COP) to be estimated for each single region;

3. A sigmoid-activated perceptron is introduced to handle the even-
tual presence of discontinuities regarding the measured energy
demand values. This is an additional feature that is able to deal
with steps in the load demand of buildings in order to provide
the most accurate regression model for different HVAC systems;
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4. Appropriate fit and significance scores have been defined to
determine the best regression model for each building, consid-
ering its accuracy and interpretability. These scores have been
defined (i) on the basis of the widely adopted coefficient of
determination 𝑅2, which provides an accuracy metric for each
regression model, and (ii) with a proper significance metric 𝛼,
to focus on each single cooling regime.

The present work is structured as follows. Section 2 describes the
fundamentals of ES and discusses the mathematical steps necessary
to introduce the proposed data-driven ES approach. Section 3 instead
describes the methodological pathway and the fundamental tools that
were developed with a general perspective of application to the existing
building stock. Then, Section 4 presents the investigated real-world
case study, an application of the proposed data-driven ES approach,
and introduces some additional hypotheses regarding the specific case
study. Section 5 presents the experimental results and discusses the
application of the methodology to the proposed case study. Finally,
Section 6 reports the final remarks and outlines future developments.

2. A novel data-driven energy signature approach

The analysis of the energy consumption of a building is generally
tackled through two main approaches, namely (i) time-of-use and (ii)
temperature-at-use. The main shortcoming of the time-of-use approach
regards its limited usefulness in respect of thermal analysis [10]. On
the other hand, a temperature-at-use approach may enlighten and more
effectively identify the causes of inefficiencies in those buildings where
the thermal loads make a major contribution to the total consumption.
For this purpose, it could be useful to analyze the consumption pattern
of a building with respect to the outdoor temperature, 𝑇𝑒𝑥𝑡, that is, to
distinguish between those consumption quotas that depend on external
weather variables and independent ones, as described in Eq. (1):

𝑃𝑇𝑂𝑇 (𝑇𝑒𝑥𝑡) =
∑

𝑃𝑑𝑒𝑝(𝑇𝑒𝑥𝑡) +
∑

𝑃𝑖𝑛𝑑 (1)

where 𝑃𝑇𝑂𝑇 is the overall building consumption; 𝑃𝑑𝑒𝑝 are the power
contributions that depend on the outdoor temperature; and, finally,
𝑃𝑖𝑛𝑑 are the power contribution that are independent of the outdoor
temperature.

Eq. (1) represents a univariate model, where the outdoor tem-
perature, 𝑇𝑒𝑥𝑡 is considered as the only input variable and the total
consumption, 𝑃𝑇𝑂𝑇 , is the output. Such a univariate model is generally
referred to as Energy Signature (ES) and is commonly represented by
means of a scatter plot (known as the energy signature of the building)
in which the mean outdoor air temperature and the mean energy con-
sumption are displayed on the 𝑥-axis and 𝑦-axis, respectively. As shown
in the qualitative examples in Fig. 1, two regions can be distinguished
in a common ES: (i) an unconditioned region where the load is not
affected by the outdoor temperature, and (ii) a conditioned region,
where the building consumption is affected by variations in the outdoor
temperature, thereby showing a particular slope coefficient. Fig. 1a
depicts a typical cooling ES (blue line), which may be derived from
the energy consumption values retrieved from a building that features
air conditioning but not heating. Fig. 1b instead shows a typical heating
ES (red line), whereas the conditioned region coincides with the lower
temperature sub-domain and features the highest consumption values
as the lowest outdoor temperatures occur.

It is useful to introduce the thermal balance of a generic building to
obtain a clear insight into ES. A reduced form of this balance equation
may be obtained by making the assumption that the envelope of the
building is in thermal equilibrium with the outdoor environment [21]:

𝜙𝑇 + 𝜙𝑉 + 𝜙𝑆𝑜𝑙 + 𝜙𝐶𝑜𝑛𝑑 + 𝜙𝑆𝑡 = 0 (2)

where 𝜙𝑇 is the thermal power transferred through the building enve-
lope; 𝜙𝑉 accounts for the heat exchanged with the environment through
ventilation; 𝜙 is the heat gain determined by solar radiation; 𝜙
3

𝑆𝑜𝑙 𝐶𝑜𝑛𝑑
Fig. 1. Two qualitative examples of energy signatures (ES): (a) a cooling ES, and (b)
a heating ES.

is the thermal power of the air conditioning system; and, finally, 𝜙𝑆𝑡 is
the internal heat generation.

For the sake of brevity and with reference to the proposed use case
application, the following equations refer to the case of cooling ES.
It should be pointed out that, by taking care of the sign convention
employed in the thermal equations, an analogous framework can easily
be derived for the case study of heating ES.

First, the heat fluxes due to the conditioning systems, 𝜙𝐶𝑜𝑛𝑑 and 𝜙𝑉 ,
respectively, are lumped into a single contribution, 𝜙𝐶𝐿𝐶 , that is:

𝜙𝐶𝐿𝐶 = 𝜙𝐶𝑜𝑛𝑑 + 𝜙𝑉 (3)

Next, two fundamental characteristic parameters of buildings,
namely the Temperature Sensitivity, 𝑘𝑇𝑂𝑇 , and the COP are introduced.
𝑘𝑇𝑂𝑇 represents the coefficient of the slope of an ES that depicts the
thermal power transferred through the envelope on the 𝑦-axis and the
outdoor temperature on the 𝑥-axis, and it is defined as:

𝑘𝑇𝑂𝑇 =
𝜙𝑇

𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛
(4)

where 𝑇𝑖𝑛 and 𝑇𝑒𝑥𝑡 formally represent the indoor and outdoor air tem-
perature, respectively. The COP is defined by the following equation:

𝐶𝑂𝑃 = −
𝜙𝐶𝐿𝐶
𝑃𝐶𝐿𝐶

(5)

where 𝑃𝐶𝐿𝐶 is the electrical consumption of the cooling system. In
accordance with the commonly adopted sign convention, where a
heat flux from a zone to the environment is negative, a negative sign
appears in Eq. (5) to provide positive COP values. Thereafter, the
cooling system’s consumption quota may be expressed in relation to
the variables from the thermal balance equation (2) and to the outdoor
temperature 𝑇𝑒𝑥𝑡. Indeed, considering Eqs. (2), (3), (4) and (5), 𝑃𝐶𝐿𝐶
can be expressed as:

𝑃𝐶𝐿𝐶 =
𝜙𝑆𝑡 + 𝜙𝑆𝑜𝑙 + 𝑘𝑇𝑂𝑇 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛)

𝐶𝑂𝑃
(6)

It is worth noting that the electrical load of the cooling system
can only be positive. Similarly, the thermal contribution of the cooling
system to the thermal balance can only be negative. Hence, the previous
equation is only valid if:

𝑘 ⋅ (𝑇 − 𝑇 ) + 𝜙 + 𝜙 > 0 (7)
𝑇𝑂𝑇 𝑒𝑥𝑡 𝑖𝑛 𝑆𝑡 𝑆𝑜𝑙
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otherwise, 𝑃𝐶𝐿𝐶 is equal to 0.
The highest outdoor temperature that determines a thermal load

qual to 0 is referred to as the Balance Point temperature, 𝑇𝐵𝑃 . This
an be easily calculated by turning the above inequality into its corre-
ponding equation, as follows:

𝐵𝑃 = 𝑇𝑖𝑛 −
𝜙𝑆𝑡 + 𝜙𝑆𝑜𝑙

𝑘𝑇𝑂𝑇
(8)

In many buildings, the indoor temperature is a controlled variable,
hich is referred to as Set Point Temperature, 𝑇𝑆𝑃 . In these cases, the

ollowing may be easily derived:

𝑇𝑂𝑇 ⋅ (𝑇𝐵𝑃 − 𝑇𝑆𝑃 ) + 𝜙𝑆𝑡 + 𝜙𝑆𝑜𝑙 = 0 (9)

Finally, a general piecewise function of the cooling system consump-
ion is derived as:

𝐶𝐿𝐶 (𝑇 )

⎧

⎪

⎨

⎪

⎩

0 if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃
𝑘𝑇𝑂𝑇 ⋅(𝑇𝑒𝑥𝑡−𝑇𝑆𝑃 )+𝜙𝑆𝑡+𝜙𝑆𝑜𝑙

𝐶𝑂𝑃 if 𝑇𝑒𝑥𝑡 > 𝑇𝐵𝑃
(10)

In the end, by considering Eqs. (8) and (10) it is found that:

𝑃𝐶𝐿𝐶 (𝑇 )

⎧

⎪

⎨

⎪

⎩

0 if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃
𝑘𝑇𝑂𝑇 ⋅(𝑇𝑒𝑥𝑡−𝑇𝐵𝑃 )

𝐶𝑂𝑃 if 𝑇𝑒𝑥𝑡 > 𝑇𝐵𝑃
(11)

It should be noted that, from a mathematically rigorous point of
view, 𝑇𝐵𝑃 is a variable, that can vary slightly, depending on the internal
heat generation, 𝜙𝑆𝑡, and the heat gain determined by solar radiation,
𝑆𝑜𝑙. Hence, the BP value can be considered as a constant parameter
f the building in most of the cases. By adopting this simplifying
ssumption, it may be found that:

𝐶𝐿𝐶 = 𝑓 (𝑇𝑒𝑥𝑡) (12)

that is, the cooling load only depends on the outdoor air temperature,
𝑇𝑒𝑥𝑡. The fairness to adopt the hypothesis above should be tested by
validating the independence of the cooling load from 𝜙𝑆𝑜𝑙 and 𝜙𝑆𝑡. This
may be done, for instance, by considering an autocorrelation analysis,
as reported at the beginning of Section 5.1. The latter formulation
represents a fundamental contribution to the literature approaches to
ES. Indeed, most of the previous research focused on deriving ES
by considering the thermal fluxes. In this regard, ES are commonly
designed as regression models that may be represented by a scatter plot
that features thermal power on the 𝑦-axis and the outdoor temperature
on the 𝑥-axis. In these cases, the slope of the conditioned region is 𝑘𝑇𝑂𝑇 ,
which is often measured in kWth∕°C. Conversely, in those cases where
the envelope surface is considered, 𝑘𝑇𝑂𝑇 is measured in kWth∕(°C ∗ m2).
Nevertheless, measurements that account for thermal power may not
be available in many real-world buildings. Meantime, electricity smart
meters are being deployed at an impressive pace. Indeed, 34% of
the metering points in Europe had already been equipped with smart
meters by 2018, with a total of over 100 million monitoring devices.
This value is expected to exceed 90% by 2030 [22]. Hence, electricity
consumption data regarding almost the whole European building stock
will be available in just a few years. For these reasons, Eq. (11)
indicates opportunities for a wider application of ES to the existing
building stock. In this regard, the presented theoretical framework
holds true for most buildings, as electricity is the energy vector of the
vast majority of the conditioning systems.

2.1. KPI definition

In the perspective of enhancing the present non-intrusive energy
audit approach, appropriate KPI should be employed to describe an ES
that exploits electrical load consumption measurements. An important
novelty of this paper is the introduction of a new KPI, which is here

∗
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referred to as Temperature Unstandardized Beta Weight 𝛽𝑇 𝑒𝑚𝑝. This
indicator is defined as the slope of the normalized rise in the electrical
load with respect to the internal heat generation, 𝜙𝑆𝑡, per Celsius
degree, considering temperatures above the BP. Hence, its unit of
measure is °C−1. So, 𝛽∗𝑇 𝑒𝑚𝑝 takes into account not only the thermal
ehavior of the building envelope, which is described by 𝑘𝑇𝑂𝑇 , but

also the cooling system efficiency and the heat generated within the
building. This KPI is defined as:

𝛽∗𝑇 𝑒𝑚𝑝 =
𝑘𝑇𝑂𝑇

𝐶𝑂𝑃 ⋅ 𝜙𝑆𝑡
(13)

It should be pointed out that 𝑘𝑇𝑂𝑇 is a constant value, as it is a
haracteristic parameter of the considered building envelope. The COP
nstead deserves more attention, since, in some cases, its value may
ary slightly depending on the outdoor temperature, 𝑇𝑒𝑥𝑡. For the aim of
his analysis and for the sake of simplicity, the COP is assumed constant.
oreover, a variety of cooling devices, featuring different COP, may

xist within the same cooling system, and intervene simultaneously or
ccording to the adopted cooling system control strategy. In the case of
ultiple conditioning regions (i.e. cooling regimes), the COP is consid-

red constant for each region detected by the proposed methodology.
he equation used to estimate the COP value, for any conditioning
egime, can be derived considering Eqs. (9) and (13) as:

𝑂𝑃 = 1
𝛽∗𝑇 𝑒𝑚𝑝 ⋅ (𝑇𝑆𝑃 − 𝑇𝐵𝑃 )

(14)

Then, by introducing 𝛽∗𝑇 𝑒𝑚𝑝, the piecewise equation reported in (11)
ecomes:

𝑃𝐶𝐿𝐶 (𝑇 )
𝜙𝑆𝑡

⎧

⎪

⎨

⎪

⎩

0 if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

𝛽∗𝑇 𝑒𝑚𝑝 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 ) if 𝑇𝑒𝑥𝑡 > 𝑇𝐵𝑃
(15)

In such a formulation of ES, the novel KPI represents the slope
coefficient of the scatter plot of the electrical load, normalized by the
internal heat generation, on the 𝑦-axis, and the outdoor temperature on
the 𝑥-axis.

In some cases the activation of the cooling system may determine a
load step. A constant quota 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 is added to account for this addi-
tional consumption step, at the interval of temperatures corresponding
to the conditioned region. temperature range determining the activa-
tion of the cooling system, that is if 𝑇𝑒𝑥𝑡 overcomes 𝑇𝐵𝑃 . Moreover,
as this methodology is intended to enhance the detection of multiple
cooling regimes, the previous equation may be generalized by consid-
ering different temperature ranges, each with their own 𝛽∗𝑇 𝑒𝑚𝑝. Given
the existence of 𝑟 cooling regimes, the lower boundary temperature that
divides the non-conditioned region from the first cooling regime is here
referred to as BP, while the successive boundary temperatures, which
distinguish two different cooling regimes are referred to as Elbow
Points (EPs). The equation in (15) can therefore be generalized to any
number of cooling regimes, by considering different temperature ranges
and 𝛽∗𝑇 𝑒𝑚𝑝 values, as follows:

𝑃𝐶𝐿𝐶 (𝑇 )
𝜙𝑆𝑡

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

𝛽∗𝑇 𝑒𝑚𝑝,1 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 ) + 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 if
⎧

⎪

⎨

⎪

⎩

𝑇𝑒𝑥𝑡 > 𝑇𝐵𝑃

𝑇𝑒𝑥𝑡 < 𝑇𝐸𝑃 ,2

...

𝛽∗𝑇 𝑒𝑚𝑝,𝑟 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 ) + 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 if 𝑇𝑒𝑥𝑡 > 𝑇𝐸𝑃 ,𝑟

(16)

where 𝑇𝐸𝑃 are the EP temperatures.
In the case where the cooling load is the only contribution to the

consumption that depends on the outdoor temperature, Eq. (16) may
be shifted upwards by considering the independent load contributions
𝑃 , introduced in Eq. (1) to find the total aggregated load of the
𝑖𝑛𝑑
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building, as follows:

𝑃𝑇𝑂𝑇 (𝑇 )
𝜙𝑆𝑡

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑃𝑖𝑛𝑑 (𝑇 )
𝜙𝑆𝑡

if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

𝑃𝑖𝑛𝑑 (𝑇 )
𝜙𝑆𝑡

+ 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶+

+ 𝛽∗𝑇 𝑒𝑚𝑝,1 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 )
if

⎧

⎪

⎨

⎪

⎩

𝑇𝑒𝑥𝑡 > 𝑇𝐵𝑃

𝑇𝑒𝑥𝑡 < 𝑇𝐸𝑃 ,2

...
𝑃𝑖𝑛𝑑 (𝑇 )
𝜙𝑆𝑡

+ 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶+

+ 𝛽∗𝑇 𝑒𝑚𝑝,𝑟 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 )
if 𝑇𝑒𝑥𝑡 > 𝑇𝐸𝑃 ,𝑟

(17)

This formulation results to be the best to employ for non-intrusive
energy audit purposes. Indeed, the aggregated load is the most trivial
measurement in buildings. Moreover, the outdoor temperature is often
available as well or it can be accurately obtained from weather data
providers. However, there is still another obstacle to the application
of the novel approach to ES, namely the estimation of the internal
heat generation. This issue needs to be addressed specifically for each
case study. In our application, it was tackled by means of the domain
expertise reported in Section 4.

3. Methodology

This Section introduces the adopted methodological approach, from
raw data processing to the achievement of the ES results and their
interpretation. The overall methodology was conceived as a general
ML-based approach for the energy audit of buildings, with a focus
on deriving the energy signature of non-residential buildings. Hence,
Section 3.1 presents the methodological approach in its general form,
as a support for the application of the energy audit to any building
sector (i.e. residential, commercial, or industrial). Section 3.2 details
the design and development of the multiple Feed-Forward NN-based
regression models for ES, which represents one of the main contribu-
tions of this manuscript. Hereafter, the employed notation regarding
the ML models is compliant with that reported in [23].

3.1. Methodological framework

The proposed methodology exploits aggregated meter-level electri-
cal load measurements and the outdoor temperature to retrieve infor-
mation about the thermal behavior of a non-residential building. As
described in Fig. 2, it can be used to perform raw data pre-processing,
analysis, exploitation, and interpretation. The methodological steps: (i)
the Pre-Processing, including the filtering, re-sampling, and normaliza-
tion procedures; (ii) the Machine Learning Workflow, which is aimed
at providing the best architecture and hyperparameters settings for
the NN regression models, and (iii) the Post-Processing, that consists of
achievement, visualization, and analysis of the experimental results, are
described in the following paragraphs.

3.1.1. Pre-processing
It is necessary to ensure that the raw input data of the power

consumption measurements extracted from the dataset are reliable,
usable, and exploitable in the subsequent methodological steps, as they
are shown in Fig. 2. The Pre-Processing pathway is mainly composed
of the following blocks: (i) the Data-Filtering, (ii) the Re-Sampling, and
(iii) the Normalization.

Data-filtering. The raw dataset is filtered in order to remove any pos-
sible unreliable data and/or outliers. Such data may be caused by
measurement errors or by anomalies in the electrical consumption
pattern. This step enhances the optimal training of the NN and improves
the overall accuracy of the energy audit. The task of detecting abnormal
load values is carried out by means of a simple gradient-based statistical
5

Fig. 2. The methodological approach of the NN-based regression models for the
non-intrusive energy audit of buildings, from the raw data to the results.

approach, which deletes single load values from time series when-
ever they feature an excessive gradient with respect to the previously
recorded data. Specifically, the distribution of the gradients within the
single load time series is considered and those values featuring a higher
gradient than three times the standard deviation of the distribution
from the load profile itself are filtered out.

Re-sampling. The filtered dataset is then re-sampled to calculate the
mean electrical load of each day, as this can represent an optimal set to
determine the ES [12]. It is worth noting that considering fine-grained
power consumption data may lead to a sharp decrease in the accuracy
of the energy audit. Indeed, the thermal capacity of buildings causes
their response to outdoor temperature changes to be non-instantaneous.

Normalization. This allows a comparison to be made among different
buildings. This step is crucial to achieve two main goals of the proposed
methodology, namely the comparative analysis and the provision of
retrofit scenarios. Indeed, the awareness of building energy efficiency
should be supported by comparing the thermal behavior of the building
with that of other buildings with a similar usage category. Furthermore,
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this step is necessary to scale the input data in order to produce an ES
in the form expressed by Eq. (17). For this reason, the re-sampled data
shall be normalized by dividing them by the internal heat generation
𝜙𝑆𝑡, as in the following equation:

𝑃𝑇𝑂𝑇 ,𝑛𝑜𝑟𝑚 =
𝑃𝑇𝑂𝑇
𝜙𝑆𝑡

(18)

where ̂𝑃𝑇𝑂𝑇 is the re-sampled daily load.

.1.2. Machine learning workflow
In this work, NN are proposed to obtain the most accurate regression

odel for ES extraction. In this step, several NN architectures are
rained to represent different degrees of freedom of the ES regression
odel, with respect to the number of cooling regimes or particular dis-

ontinuities of the ES. Moreover, each NN architecture is trained with
ultiple combinations of its hyperparameters to ensure optimal train-

ng of each NN architecture. Several architectures are then compared
nd the best is selected, on the basis of accuracy and interpretability.
his step is composed of the following two blocks: (i) NN Regression
nalysis, and (ii) Fit and Significance Analysis.

N regression analysis. The relationship between the outdoor weather
ariables (e.g., outdoor temperature) and the electrical load of a build-
ng is affected by the response of the HVAC system to the required
hermal load. Different regression models were designed, considering
he eventual existence of multiple cooling regimes over different ranges
f outdoor weather variables, in order to assess the impact of these vari-
bles on the electrical load of a building. The Model Architectures block

involves implementing several regression models, 𝐴𝑖, where 𝑖 refers
to the number of cooling regimes identified by the model. Five main
regression models were considered: (i) a basic regression model 𝐴1,
eaturing one unconditioned region and one cooling regime; (ii) three
ore complex models, that is, 𝐴2, 𝐴3, and 𝐴4, which include one uncon-
itioned region and two, three, and four cooling regimes, respectively;
nd (iii) 𝐴1𝐷, an evolution of the 𝐴1 regression model to handle step
iscontinuities. The fundamental designs of these regression models are
etailed in Section 3.2.

Each regression model is trained and tested separately. Hence, the
utdoor air temperature is considered as input for the various NN,
hile the aggregated load is provided as output and compared with

eal values. The dataset is split into the training and test sets, which
orrespond to two-thirds and one-third of the dataset, respectively.
urthermore, in order to guarantee the optimal training of each single
odel, a Grid Search procedure, in which different sets of values of the
N hyperparameters were tested, was carried out for each regression
odel. Hence, all the NN regression models, 𝐴𝑖, with 𝑖 = 1...𝑚 were

rained with all the hyperparameters set 𝜆𝑗 with 𝑗 = 1...𝑛.
The Grid Search results obtained for each 𝐴𝑖 model were then

nalyzed by the Select Best module, which selects the best set of hyper-
arameters, 𝜆∗, and, consequently, the trained NN regression model,
𝑖
𝜆∗ . This operation ensures that under or over-fitting phenomena are
voided. It is worth noting that several hyperparameters were found
o be irrelevant, because of the simplicity of the considered regression
roblem. Hence, the only hyperparameters considered in the Grid
earch procedure were the learning rate, which was tested over ranges
f values from 0.5 to 0.0001, and the batch, which was set equal to the
raining set length (i.e. batch-learning), to multiple time steps (i.e. mini-
atch), or to one (i.e. online learning). The remaining hyperparameters,
uch as the selection of the Adam optimizer and a 500 epochs training
rocedure, were fixed. Finally, the Root Mean Squared Error (RMSE)
as applied as a loss function.
6

e

it and significance analysis. The resulting NN architectures 𝐴𝑖
𝜆∗ with

𝑖 = 1,… , 𝑚} were compared according to the following criterias.
irstly, a fitting criterion was considered, that is, the accuracy of the
egression model. This aspect was quantified by means of the overall
oefficient of determination of the model with respect to the input data
2. More complex models can in fact achieve a better performance,

n terms of accuracy. However, in such a case, the interpretability
f the model decreases and the significance of the detected cooling
egimes may not justify the increased complexity of the regression.
urthermore, a higher fitting level may be caused by an overfitted
egression model. In such a circumstance, the overfitting phenomenon
erives from the distribution of the data, which may be relevant in
tatistics, but which is insignificant from an energy audit point of view.
ence, a significance score was defined as:

= 1
𝑁

𝑁
∑

𝑟=1
𝑅2
𝑟 (19)

here 𝑅2
𝑟 stands for the coefficient of determination of a cooling regime

egion 𝑟, and 𝑁 is the number of cooling regime regions. The best
odel, 𝐴∗

𝜆∗ , was selected as a trade-off to ensure both high 𝑅2 and 𝛼
values.

3.1.3. Post-processing
Finally, as shown in Fig. 2, the resulting best model, 𝐴∗

𝜆∗ , was
exploited to provide an accurate Energy Audit of the investigated
buildings. Firstly, the ES of the buildings was obtained to highlight the
behaviors of the HVAC system and of the building. Some fundamental
energy-related KPI were then extrapolated by the best NN regression
model. Thereby, the Energy Audit consists of two blocks: (i) the Energy
Signature, and (ii) the KPI Analysis.

Energy signature. The reference ES was obtained by the NN regression
model, 𝐴∗

𝜆∗ , by employing both the training and the validation sets to
obtain a higher accuracy. The thus obtained ES can feature different
shapes, depending on the model resulting from the previous steps.
Indeed, ES can feature one or more sloped lines, regarding different
cooling regimes, and may feature a step, which represents a possible
discontinuity in the consumption values measured in two different
regions. These different ES categories are represented by the above-
mentioned 𝐴1, 𝐴2, 𝐴3, 𝐴4, and 𝐴1𝐷 models that are presented in
ection 3.2.

PI analysis. Once the outcomes of the analysis had been obtained, the
ypical building parameters were calculated. This methodology allows
he most important parameters that describe the thermal behavior of
uildings and the efficiency of their cooling system to be estimated.
hese parameters can be directly extrapolated by using the trained NN
eights and biases values. Section 2.1 details the KPIs that can be esti-
ated and points out the physical issues underlying ES. The buildings
PI that can be extracted by means of the described methodology are:
i) the 𝛽∗𝑇 𝑒𝑚𝑝, (ii) the COP, (iii) the BP, (iv) and the EPs.

.2. NN regression design

In the last few decades, the research community has exploited
terative calculation methods for the determination of ES, by looking
or the best fit considering a number of many possible linear regression
odels. An efficient, quick, customizable, and easy-to-use ML tool is
roposed in this manuscript to accomplish the regression task presented
n the previous Sections. This is a NN that was developed to identify
he unconditioned region, multiple cooling regimes, and the eventual
resence of a load step concerning the activation of the cooling system.
Feed-Forward NN was selected, among the NN in the literature, to

ulfill this task, considering the requirements of the regression model
nd for the sake of interpretability of the designed ML tool.

Feed-Forward NN are constituted by perceptrons. These are simple

lements that are fed with an input vector, 𝑥, which is weighted by
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Fig. 3. Analogy of the human brain-inspired representation, the matrix form and the function form of an NN-based regression model.
a trainable vector, 𝑤, and summed up with a bias 𝑏. An activation
function, 𝜒 , makes use of the previous contributions and provides the
perceptron output, 𝑎. This operation may be represented as a function,
as in the following equation:

𝑎 = 𝑓 (𝑥) = 𝜒(⟨𝑤, 𝑥⟩ + 𝑏) (20)

or in its matrix form:

[

𝑤1 ... 𝑤𝑉
]

×
⎡

⎢

⎢

⎣

𝑥1
...
𝑥𝑉

⎤

⎥

⎥

⎦

+ 𝑏
activation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑎 (21)

where 𝑉 represents the dimension of the input vector.
Multiple perceptrons may be fed by the same inputs to form a layer.

The layer will output a vector with a dimension equal to the number
of perceptrons in the layer itself according to the following equation:

⎡

⎢

⎢

⎣

𝑤1,1 ... 𝑤1,𝑉
... ... ...

𝑤𝑃 ,1 ... 𝑤𝑃 ,𝑉

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

𝑥1
...
𝑥𝑉

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑏1
...
𝑏𝑃

⎤

⎥

⎥

⎦

activation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

⎡

⎢

⎢

⎣

𝑎1
...
𝑎𝑃

⎤

⎥

⎥

⎦

(22)

where 𝑃 represents the number of perceptrons in the layer.
Multiple layers may be designed to form a Multi-Layer Perceptron

(MLP) network. In this case, the output of a layer is fed as input for
the following one, and so on. The last layer of the network is referred
to as the output layer, and its output is 𝑦. This network is fed with one
or more external variables, which are, for the present application, the
outdoor weather variables, and it provides an output, that is, the total
electrical load. As this analysis focuses on the investigation of ES, the
only variable considered in the input layer is the outdoor temperature.
This implies assuming that the other weather variables are negligible.
The validity of this assumption may be tested, for instance, by means
of a correlation analysis, as it will be reported in Section 5.

Hence, this case study has investigated the univariate ES. Con-
sidering those buildings where the cooling load, 𝑃𝐶𝐿𝐶 , is the only
load contribution that depends on the outdoor temperature, it follows
that a total load variation, determined by a temperature change, is a
cooling load variation. Under this condition, the aggregated electrical
load measurements of buildings may be employed for energy audit
purposes. It is worth noting that employing the aggregated electrical
load, instead of the cooling load, could provoke the presence of noise in
7

Table 1
Characteristics of the perceptron employed in the NN.

Perceptron Input from Activation Output to Trainable

dense_1_ReLU_1 Input Layer ReLU dense_2 Trainable
dense_1_ReLU_i Input Layer ReLU dense_2 Trainable/frozen
dense_1_step Input Layer Sigmoid dense_2 Trainable/frozen
dense_2 Layer 1 Linear Output Trainable

the regression models, as mentioned in Section 2, with a slight impact
on their accuracy.

According to the abovementioned features regarding the desired
Feed-Forward NN regression model, an MLP was designed to exploit
the outdoor temperature and aggregated load measurements. Firstly, a
single node input layer was considered to account for a one-dimensional
input vector 𝑥. This vector was derived by scaling the outdoor mean
daily temperatures to ensure effective training of the models. Indeed,
the input data were normalized accordingly to both the minimum and
maximum values, and were scaled to the range [0,1]. This is a standard
step for NN training.

The offset of the regression line, produced by the existence of
temperature-independent load contributions, 𝑃𝑖𝑛𝑑 (see Eq. (17)), was
then estimated by providing the network with a single perceptron layer
featuring a linear activation. This element in fact estimates the offset
of the regression line by adjusting its bias value during the training.
Since, according to Eq. (17), this offset exists for both unconditioned
and conditioned regions, this perceptron represents the network output
layer, as this allows the estimated offset value to be summed up with
any contribution calculated by the previous layers of the network.

Furthermore, the model is capable of detecting multiple cooling
regimes, characterized by different temperature ranges and line slopes.
To this aim, a layer, consisting of a number of perceptrons with a
Rectifier Linear Unit (ReLU) function, was designed. These elements
provide an output as follows:

𝑎

⎧

⎪

⎨

⎪

0 if 𝑤 ⋅ 𝑥 + 𝑏 <= 0

𝑤 ⋅ 𝑥 + 𝑏 if 𝑤 ⋅ 𝑥 + 𝑏 > 0
(23)
⎩
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Fig. 4. Outlook of the proposed machine learning-bases energy audit approach.

These perceptrons provide an output equal to zero for any input
below a certain threshold. Connecting these layer elements to the input
layer, they are fed with the outdoor temperature value. Hence, each
ReLU activated perceptron outputs zero for any temperature below
a certain EP. The lowest threshold of those detected by the ReLU
activated perceptron represents the BP temperature. Indeed, any single
perceptron of the layer outputs zero below that temperature, that is,
such a temperature does not determine any thermal load. For these
reasons, these perceptrons were included in the hidden layer of the
network. Lastly, it may also be desirable to design a NN that is able to
handle discontinuities. Indeed, the regression should be able to detect
the eventual existence of an activation step for the cooling system,
𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 . To this aim, a perceptron, featuring a sigmoid activation, was
provided to the network. This function in fact outputs values close to
zero for inputs below zero and close to one for inputs above zero, as it
may be derived from Eq. (24):

𝑎 = 1
1 + 𝑒𝑤⋅𝑥+𝑏 (24)

A proper training would determine the weight and bias values of
these perceptrons to shape a steep rise, as similar as possible to a
step function. Namely, if 𝑏 ≪ 0 and |𝑤| ≫ |𝑏|, the sigmoid function
approximates to the following equation:

𝑎

⎧

⎪

⎨

⎪

⎩

0 if 𝑤 ⋅ 𝑥 + 𝑏 <= 0

1 if 𝑤 ⋅ 𝑥 + 𝑏 > 0
(25)

It should be noted that the approximation of the step function with
a sigmoid is made necessary by the fact that it is highly recommended
8

to not design an ad-hoc step activation function for NN. Indeed, step
functions should not be included in NN, as they do not admit gradient
calculation, which is a fundamental mechanism of NN training. This
perceptron is included in the hidden layer along with the ReLU per-
ceptrons. The inclusion of a sigmoid-activated perceptron represents
an additional novel advance with respect to the literature regression
models presented in the literature for ES purposes.

Finally, the MLP is ready when the designed layers are connected.
Besides estimating an offset, by means of its bias, the output layer also
weights the contribution of the previous elements of the network by
means of its weights vector. Considering this and the outputs derived
from the elements of the hidden layer, as reported in Eqs. (23) and (25)
with regard to the ReLU-activated neurons and the sigmoid-activated
one, respectively, the piecewise function of the network, described by
the following equation, is obtained:

𝑦(𝑥)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑏𝑜𝑢𝑡 if 𝑥 <= 𝑥𝐵𝑃
𝑏𝑜𝑢𝑡 +

+ 𝑤2,𝑅𝑒𝐿𝑈,1 ⋅ (𝑤1,𝑅𝑒𝐿𝑈,1 ⋅ 𝑥 + 𝑏1,𝑅𝑒𝐿𝑈,1) +

+ 𝑤2,𝑠𝑡𝑒𝑝

if
⎧

⎪

⎨

⎪

⎩

𝑥 > 𝑥𝐵𝑃

𝑥 < 𝑥𝐸𝑃 ,1

...

𝑏𝑜𝑢𝑡 +

+
𝑃
∑

𝑝
𝑤2,𝑅𝑒𝐿𝑈,𝑝 ⋅ (𝑤1𝑅𝑒𝐿𝑈,𝑝 ⋅ 𝑥 + 𝑏1,𝑅𝑒𝐿𝑈,𝑝) +

+ 𝑤2,𝑠𝑡𝑒𝑝

if 𝑥 > 𝑥𝐸𝑃 ,𝑛

(26)

where 𝑤2,𝑅𝑒𝐿𝑈,𝑝 is the weight of the connection from perceptron 𝑝 of
the hidden layer to the output layer perceptron, and 𝑤1,𝑅𝑒𝐿𝑈,𝑝 is the
connection from the input layer to the perceptron 𝑝 of the hidden layer.
It is easy to see that Eq. (26) is equivalent to with Eq. (17), that is the
piecewise temperature-depending one. To conclude, Fig. 3 highlights
the correspondence between the Feed-Forward NN architecture and its
matrix and function forms presented in the above description.

The different regression models presented in Section 3.1.2 can
be tested by simply activating or deactivating different perceptrons
from the hidden layer. The deactivation of branches of the network
is achieved by initializing the perceptron bias and weights to output
zero and setting them as non-trainable parameters. The possibilities for
customizing the models of NN regression are summarized in Table 1.
For instance, the basic regression model featuring one unconditioned
region and one conditioning regime is achieved by training a single
ReLU perceptron. Multiple ReLU perceptrons can be activated to detect
multiple cooling regimes, while the sigmoid-activated perceptron can
be employed to handle discontinuities. The configured NN architectures
were trained separately for each building, subsequent to the Grid
Search procedure and the Fit and Significance Analysis described in
Section 2.

The energy audit can easily be performed by inspecting the network
biases and weights. The outlook of this ML-based approach, is shown
in Fig. 4. The KPI analysis was carried out considering the weights and
biases of the NN regression model. The EPs, BPs, 𝛽∗𝑇 𝑒𝑚𝑝 values, and the
position and value of the activation step and load offset can be deter-
mined directly from the NN trained parameters. An EP is easily found
by turning the inequalities that define the conditions in Eq. (26) into
their corresponding equations. Whenever multiple cooling regimes are
considered, the EP should be sorted, and the lowest one represents the
BP. Each cooling regime is characterized, not only by its temperature
range, but also by the coefficient of the line in that region, that is 𝛽∗𝑇 𝑒𝑚𝑝.
These values can be obtained as:

𝛽∗𝑇 𝑒𝑚𝑝,𝑟 = 𝛴(𝑤ℎ𝑖𝑑𝑑𝑒𝑛,𝑝 ⋅𝑤𝑜𝑢𝑡,𝑝) ∀𝑖 | 𝑇𝐵𝑃 ,𝑝 < 𝑇𝑚𝑎𝑥,𝑟 (27)

where 𝛽𝑇 𝑒𝑚𝑝,𝑟 is the coefficient of the line in the cooling region 𝑟;
𝑤 is the weight of the incoming connection of perceptron 𝑝;
ℎ𝑖𝑑𝑑𝑒𝑛,𝑝
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𝑤𝑜𝑢𝑡,𝑝 is the weight of the connection between perceptron 𝑝 and the
perceptron in the output layer, 𝑇𝐵𝑃 ,𝑝 is the 𝐵𝑃 of perceptron 𝑝, and
𝑇𝑚𝑎𝑥,𝑟 is the maximum temperature of region 𝑟. It is worth noting that
𝛽∗𝑇 𝑒𝑚𝑝,𝑟 should be rescaled, accordingly to the scaling method employed
for normalizing input and outputs of the network.

The temperature relative to the cooling regime activation step can
be retrieved by considering the flex point of the sigmoid function,
which can be found by setting its second derivative equal to zero, as
follows:

𝑑2 𝜒𝑠𝑡𝑒𝑝

𝑑(𝑤 ⋅ 𝑥 + 𝑏)2
= −

(𝑒𝑤⋅𝑥+𝑏 − 1) 𝑒𝑤⋅𝑥+𝑏

(𝑒𝑤⋅𝑥+𝑏 + 1)3
= 0 (28)

hen:
𝑤⋅𝑥𝑎𝑐𝑡,𝐶𝐿𝐶+𝑏 = 1 (29)

nd, finally, the following is obtained:

𝑎𝑐𝑡,𝐶𝐿𝐶 = −
𝑏𝑠𝑡𝑒𝑝
𝑤𝑠𝑡𝑒𝑝

(30)

The value of 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 can be derived from the weight of the
connection between the sigmoid-activated perceptron and the output
layer neuron, 𝑤2,𝑠𝑡𝑒𝑝. Finally, the value of the offset is derived from the
bias of the output layer perceptron 𝑏𝑜𝑢𝑡.

4. Case study

The methodology was applied to a real dataset, consisting of one
year of aggregated load measurements with an hourly resolution, ob-
tained from about eighty DCs of an important Telecommunication
(TLC) service provider in Italy. DC are industrial buildings that host the
information technology equipment devoted to the management of TLC
networks and to other services. The energy demand of TLC networks
and their management buildings have been raising dramatically over
the last years, featuring an annual increase of about 10% over the last
decade [24].

TLC buildings are characterized by an occasional and irrelevant
presence of occupants, which has an insignificant impact on the final
electrical demand. In fact, most of the consumption is due to the TLC
equipment and by the huge electric demand for the cooling systems
that are necessary to avoid overheating of the equipment itself. The
contributions that account for these sub loads of the total building
power consumption, 𝑃𝑇𝑂𝑇 , are referred to as 𝑃𝑇𝐿𝐶 and 𝑃𝐶𝐿𝐶 respec-
tively. The minor contribution to the load from the auxiliaries and
from the lighting system are instead referred to as 𝑃𝐴𝑢𝑥, while 𝑃𝐷𝐼𝑆𝑆
takes into account the energy conversion losses and the load due to the
Uninterruptible Power Supply (UPS) units [25]. The latter contribution
and the direct consumption of the TLC equipment, 𝑃𝑇𝐿𝐶2, are generally
assumed to be constant in time, 𝑡. Hence, the energy balance of TLC
buildings may be written as:

𝑃𝑇𝑂𝑇 (𝑡) = 𝑃𝑇𝐿𝐶 + 𝑃𝐷𝐼𝑆𝑆 + 𝑃𝐶𝐿𝐶 (𝑡) + 𝑃𝐴𝑢𝑥(𝑡) (31)

The energy balance may be expressed more usefully as a function of
the outdoor temperature, 𝑇𝑒𝑥𝑡, for the purpose of the present research
effort, as it was introduced in Section 2. In this case, the fundamental
equation that describes the behavior of the building is:

𝑃𝑇𝑂𝑇 (𝑇 ) = 𝑃𝑇𝐿𝐶 + 𝑃𝐷𝐼𝑆𝑆 + 𝑃𝐶𝐿𝐶 (𝑇 ) + 𝑃𝐴𝑢𝑥 (32)

where 𝑃𝐶𝐿𝐶 is the only contribution to the total consumption that
depends on the outdoor temperature. The constant and temperature-
independent load quotas, 𝑃𝑇𝐿𝐶 and 𝑃𝐷𝐼𝑆𝑆 , can be referred to as the
ase load:

𝑏𝑎𝑠𝑒 = 𝑃𝑇𝐿𝐶 + 𝑃𝐷𝐼𝑆𝑆 (33)

The load contribution of the auxiliary systems, 𝑃𝐴𝑢𝑥, which is vari-
ble but independent of the outdoor temperature, may then be added
9

o the aforementioned base load to form the independent consumption
uota:

𝑖𝑛𝑑 = 𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥 (34)

The crucial formulation of ES introduced in Section 2 and expressed
n Eq. (17) can be introduced for this particular case study as:

𝑃𝑇𝑂𝑇 (𝑇 )
𝜙𝑆𝑡

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥
𝜙𝑆𝑡

if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

...
𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥

𝜙𝑆𝑡
+

+ 𝛽∗𝑇 𝑒𝑚𝑝 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 )
if 𝑇𝑒𝑥𝑡 > 𝑇𝐸𝑃 ,𝑟

(35)

By considering the eventual existence of discontinuities due to an
ctivation load step of the cooling system, 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 , the piecewise form

expressed in Eq. (35) becomes:

𝑃𝑇𝑂𝑇 (𝑇 )
𝜙𝑆𝑡

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥
𝜙𝑆𝑡

if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

...
𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥

𝜙𝑆𝑡
+

+ 𝛽∗𝑇 𝑒𝑚𝑝 ⋅ (𝑇𝑒𝑥𝑡 − 𝑇𝐵𝑃 ) +

+
𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶

𝜙𝑆𝑡

if 𝑇𝑒𝑥𝑡 > 𝑇𝐸𝑃 ,𝑟

(36)

It is worth pointing out that the activation of the cooling system
determines a step of the electrical load in real-case measurements, in-
dependently of the thermal load the system has to deal with. Hence, this
quota is taken into account as a contribution to the total consumption
in the cooling region, but it is considered constant.

It should be noted that all the simplifying assumptions introduced
in Section 2 hold true for this particular case study. The 𝑇𝑖𝑛 value can
be considered constant and can be regarded as 𝑇𝑆𝑃 , as a result of the
strict constraints regarding the control of the indoor air temperature
of DC. It is important to point out that the 𝑃𝐴𝑢𝑥 value can depict a
ertain statistical correlation with the outdoor temperature. Since the
𝐴𝑢𝑥 load profile depicts a typical daily pattern [26], the Re-Sampling
tep described in Section 3.1.1 has removed this statistical correlation.
fter deriving the mean daily values, Eq. (36) can be expressed as:

𝑃𝑇𝑂𝑇 (𝑇 )
𝜙𝑆𝑡

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥

𝜙̂𝑆𝑡
if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

...

𝑃𝑏𝑎𝑠𝑒 + 𝑃𝐴𝑢𝑥

𝜙̂𝑆𝑡
+

+ 𝛽∗𝑇 𝑒𝑚𝑝 ⋅ (𝑇̂𝑒𝑥𝑡 − 𝑇𝐵𝑃 ) +

+
𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶

𝜙𝑆𝑡

if 𝑇𝑒𝑥𝑡 > 𝑇𝐸𝑃 ,𝑟

(37)

where 𝑃 refers to mean daily load, 𝑇̂ to mean daily temperature and
̂𝑆𝑡 to mean daily internal heat generation.

Next, on the basis of the TLC domain expertise, an additional
implification is introduced. Indeed, the internal heat generation in DC
ay be considered equal to the constant electrical load of TLC devices,

hat is:

𝑆𝑡 = 𝑃𝑇𝐿𝐶 . (38)

This assumption eases the calculation of the internal heat generation
alue, as 𝑃𝑇𝐿𝐶 can be trivially estimated [26] considering 𝑃𝑏𝑎𝑠𝑒, which

comprehends the former load quota and the contribution of power

losses 𝑃𝐷𝐼𝑆𝑆 [25]. Finally, both sides of piecewise equation (37) can
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Table 2
Correlation analysis of the aggregated electrical load, 𝑃𝑇𝑂𝑇 , and the weather variables
from a DC.

𝑃𝑇𝑂𝑇 𝑇 𝑅𝐻 𝑣𝑤𝑖𝑛𝑑 𝐺

𝑃𝑇𝑂𝑇 1 0.884 −0.409 −0.230 0.376
𝑇 0.884 1 −0.530 −0.286 0.484
𝑅𝐻 −0.409 −0.530 1 0.151 −0.522
𝑣𝑤𝑖𝑛𝑑 −0.230 −0.286 0.151 1 −0.157
𝐺 0.376 0.484 −0.522 −0.157 1

be normalized by 𝑃𝑇𝐿𝐶 and expressed, as:

𝑃𝑇𝑂𝑇 ,𝑛𝑜𝑟𝑚(𝑇 ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑃𝑏𝑎𝑠𝑒,𝑛𝑜𝑟𝑚 +

+ 𝑃𝐴𝑢𝑥,𝑛𝑜𝑟𝑚
if 𝑇𝑒𝑥𝑡 <= 𝑇𝐵𝑃

...
𝑃𝑏𝑎𝑠𝑒,𝑛𝑜𝑟𝑚 +

+ 𝑃𝐴𝑢𝑥,𝑛𝑜𝑟𝑚 +

+ 𝛽∗𝑇 𝑒𝑚𝑝 ⋅ (𝑇̂𝑒𝑥𝑡 − 𝑇𝐵𝑃 ) +

+ 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶,𝑛𝑜𝑟𝑚

if 𝑇𝑒𝑥𝑡 > 𝑇𝐸𝑃 ,𝑟

(39)

that is, the estimation of the final expression of the normalized total
power consumption, 𝑃𝑇𝑂𝑇 ,𝑛𝑜𝑟𝑚(𝑇 ).

5. Experimental results

The proposed methodology has been tested on a real-world dataset
pertaining to the case study presented in Section 4. The purpose of
this Section is to present and comment on the experimental results
of the different steps of the methodological framework, that is, (i)
the Pre-Processing, (ii) the Machine Learning Workflow, and (iii) the
Post-Processing.

5.1. Pre-processing

The input data were first refined, in the Data-Filtering step, by
replacing any outliers, that is, any out-of-range values whose existence
could depend on measurement errors. By doing so, around 5% of the
load profiles’ values were substituted by means of linear interpolation.
The mean daily values were then obtained by resampling both the load
and the outdoor temperature time series. Finally, these values were
normalized with respect to the internal heat generation, 𝜙𝑆𝑡. This was
done, in the investigated case study, by dividing the load profiles by
the DCs’ load associated with the TLC equipment, 𝑃𝑇𝐿𝐶 . Fig. 5 shows
the annual normalized load profiles of the buildings present in the
dataset. Most of the buildings’ load profiles are characterized by a low
consumption, which is close to the value of the base load for the colder
months. A relevant increase in consumption can instead be observed
for all the buildings between the end of spring and the beginning of
summer.

In some cases, the electrical load can exceed twice the value it
has during the cold months, due to the additional contribution of the
cooling system to consumption. Fig. 6 instead shows the load duration
10
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curves from a subset of 14 buildings located in Bologna, Italy. The
typical behavior of the buildings is characterized by quasi-constant low
consumption values for several days, while the load rapidly increases
for a relatively low number of hot days. This behavior is particularly
interesting when compared with the duration curve of the outdoor
temperature of the city recorded for the year 2020. The mean daily tem-
perature duration curve is quite linear, ranging from values below zero
to up to 30 °C. At the same time, the load curves depict different slopes
on the graph. This suggests that the impact of the outdoor temperature
on the load of the building is not linear, but it only becomes relevant
just in case a certain temperature threshold is overcome. Moreover, a
correlation analysis of the weather variables was carried out, and it
pointed out that temperature was the most relevant factor in determin-
ing the electrical load in a DC, as reported in Table 2. In this Table,
the Pearson correlation factor 𝑅 between the weather variables and
the electrical load are calculated. This analysis clearly highlights the
minor relevance of the other weather variables, namely radiation (𝐺),
relative humidity (𝑅𝐻), and wind speed (𝑣𝑤𝑖𝑛𝑑). Indeed, the correlation
factor reported between the electrical load 𝑃𝑇𝑂𝑇 and the solar radiation
𝐺 depicts low values. For instance, the Pearson coefficient between 𝐺
and 𝑃𝑇𝑂𝑇 is 0.376, regarding the building whose resulting correlation
factors are reported in Table 2. The mean value retrieved for the whole
dataset was 0.411, with a few buildings featuring a correlation factor
over 0.5. At the same time, the mean 𝑅 retrieved between temperature
and 𝑃𝑇𝑂𝑇 was 0.873, with over 90% of the buildings featuring a
value over 0.8. Hence, the electrical load is proved to have a slight
dependence on the radiation, 𝐺, for this case study. Moreover, it should
be recalled that the internal heat generation, 𝜙𝑆𝑡, is constant. These
two conditions ensure the fair adoption of the simplifying hypothesis
introduced in Section 2, that is, the BP temperature, 𝑇𝐵𝑃 , can be
onsidered as a constant parameter of the investigated buildings.

.2. Machine learning workflow

The pre-processed data were fed into the Model Architectures block
hat redirected it to the NN regression models. Specifically, five models
ere tested for each building, respectively: (i) a single cooling regime
odel, 𝐴1; (ii) three multiple cooling regimes models with a number of
P from 2 to 4, namely 𝐴2, 𝐴3, and 𝐴4; and, finally, (iii) a regression
odel provided with a sigmoid-activated branch to handle disconti-
uities, considering the existence of a single cooling region, called
1𝐷.

The Grid Search procedure is carried out separately for each build-
ng and model to ensure the optimal training of each NN. In all cases,
atch learning resulted to be the best solution. The optimal setting for
he learning rate is not unique, and it depends on the building and on
he employed regression model. Indeed, higher learning rates, in the
rder of magnitude of 0.1, resulted in a higher accuracy for simple
etworks, such as the one employed for the single cooling regime
odel, 𝐴1. On the opposite, the model requiring the lowest learning

ates, in the order of magnitude of 0.001, was the model that was used
o handle discontinuities, 𝐴1𝐷.

In all cases, at least one reliable model was provided for each build-

ng by the Grid Search procedure. This is witnessed by the analogous
Table 3
Fit and significance scores from a subset of buildings taken from the real-world dataset, considering different regression models. The best models
are highlighted for each building.
Model 𝐴1 𝐴2 𝐴3 𝐴4 𝐴1𝐷

𝑅2 𝛼 𝑅2 𝛼 𝑅2 𝛼 𝑅2 𝛼 𝑅2 𝛼

Building A 0.965 0.957 0.973 0.723 0.975 0.663 0.975 0.503 0.967 0.705
Building B 0.952 0.940 0.971 0.877 0.971 0.615 0.971 0.464 0.956 0.860
Building C 0.912 0.872 0.924 0.697 0.924 0.468 0.924 0.351 0.919 0.622
Building D 0.950 0.940 0.957 0.770 0.957 0.469 0.957 0.384 0.950 0.765
Building E 0.936 0.888 0.936 0.383 0.936 0.346 0.936 0.239 0.936 0.393
Building F 0.898 0.889 0.904 0.548 0.904 0.358 0.904 0.267 0.901 0.412
Building G 0.940 0.929 0.960 0.762 0.961 0.625 0.961 0.296 0.941 0.770
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Fig. 5. Normalized daily mean electrical load profiles from a subset of buildings
included in the analyzed real-world dataset.

Fig. 6. Load duration curves and temperature duration curve from the subset of
buildings located in Bologna.

Fig. 7. Evolution of the position of the elbow points over the NN training epochs.
11
Fig. 8. Fit and accuracy scores from different regression models pertaining to Building
A.

decreasing evolution of the training and test losses over the epochs, as
well as by the achievement of stable KPI values as they were computed
by inspecting the network. The extraction of the KPIs is dealt with in
more details in Section 5.3. Nevertheless, in order to indicate the stable
training that was achieved by the networks, a result from the calculus
of the EP for model 𝐴3 is anticipated in Fig. 7.

Three EP values were computed for the DC referred to as Building
A. As it can be observed by looking at the EP values computed during
the first training epochs, all the perceptrons involved in the network
are affected by relevant fluctuations in their parameters. Nevertheless,
as the training procedure continues, the fluctuations appear to decrease
rapidly and finally reach a stable plateau a few epochs after 100. No
relevant change in the KPI estimation can be observed for the following
400 epochs, which would appear to indicate that the network had
achieved the optimal parameters training to fit the problem.

Hence, an optimal trained network, 𝐴𝑚
𝜆∗ , was obtained for each

building and regression model. Next, the coefficient of determination,
𝑅2 (i.e. fit score), and the significance score, 𝛼, were computed for each
network. It should be pointed out that the fit and significance scores
were designed as complementary metrics. The simultaneous analysis
of these metrics ensures a reliable selection of the correct regression
model. Indeed, on the one hand, the fit score, 𝑅2, is expected to increase
as the networks are provided with more perceptrons, that is, they can
describe more cooling regimes. On the other hand, the significance
score, 𝛼, can be expected to decrease as multiple regions are defined.

These expectations are confirmed by the experimental results from
the best single and multiple cooling regimes models, as reported in
Table 3 for a subset of buildings. The inversely proportional relation-
ship between the fit score, 𝑅2, and the significance score, 𝛼, with
respect to the number of perceptrons is confirmed. Indeed, it can be
observed that 𝑅2 increases for any single investigated building, as
multiple cooling regimes are added to the regression model. Similarly,
𝛼 always decreases. Furthermore, 𝑅2 rises, albeit only up to a certain
value, after which any further increases in the model complexity do
not determine any further improvements. At the same time, it may be
observed that, as an increase in complexity does not determine any
further boosting of the accuracy of the model, it determines a drop in
the significance score.

This can easily be noted by looking at the scores of Building E
in configurations 𝐴1 and 𝐴2, Building C in configurations 𝐴2 and 𝐴3,
and Building G in configurations 𝐴3 and 𝐴4. This aspect is highlighted
for Building A in Fig. 8. In order to select the best configuration, the
following criteria are applied to the Fit and Significance Analysis block:
(i) achieve the highest possible fit score, 𝑅2, (ii) guarantee a relevant
significance score, 𝛼, over 0.6, and (iii) obtain the highest possible
significance score.

With regard to the 𝐴1𝐷 models, it should be pointed out that this
approach only resulted to be the best for one building. The model did
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Fig. 9. Visual comparative analysis of the four regression models 𝐴1, 𝐴2, 𝐴3, and 𝐴4, applied to Buildings A and B.
not provide any meaningful outcomes for the other investigated sites
because of the irrelevant magnitude of its output. For this reason, the
discussion first focuses on the remaining regression models. The results
of the particular case study, whose best regression model resulted to be
𝐴1𝐷, are presented and commented in Section 5.3.

For the sake of clarity, Fig. 9 reports the resulting ES for the single
cooling regime, 𝐴1, and multiple cooling regime regression models, 𝐴2,
𝐴3, and 𝐴4, for Buildings A and B. The background colors of the cooling
regions represent the coefficients of determination that were obtained,
for each of them, by the regression model. In both cases, the single
cooling regime regression model, 𝐴1, depicts high significance score
values, but the ES obtained as an output of the NN does not fit the real
values optimally. The accuracy of the output improves as the number
of cooling regions increases, that is, the coefficient of determination of
12
the model increases. At the same time, it should be observed that the
single region coefficient of determination decreases, thereby causing a
decline in the significance score.

Considering the criteria mentioned above to select the best model,
the three cooling regimes model, 𝐴3, was selected for Building A, while
the two cooling regimes model, 𝐴2, was selected for Building B. Indeed,
no significant improvement regarding the fit score was observed when a
fourth cooling regime was considered for Building A with respect to the
three cooling regimes model, 𝐴3. In the 𝐴4 model, the narrow region
detected (i.e. red zone) for the second regime shows an extremely low
significance value. Hence, this configuration was rejected. Regarding
Building B, the three cooling regimes model, 𝐴3, does not enhance the
relevant increase in the accuracy of the model as the first and second
regions have very similar slopes. Therefore, these two regions are likely
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to be correctly interpreted as a single one. Lastly, it is interesting to
note that the four-cooling regimes model, 𝐴4, from Building B actually
depicts three regions. This is due to the collapse of two EP to the same
value. This phenomenon is observed for several buildings as multiple
cooling regimes’ models are tested.

Generally, the single cooling regime model, 𝐴1, was found to be
suitable for the majority of the investigated sites, and showed the
best performances for almost 60 buildings. Around 20 buildings were
described better by the two-cooling regimes model, 𝐴2, while in just
a few cases the three-cooling regions model, 𝐴3, resulted to be the
best. Finally, in just one case the model featuring a sigmoid-activated
building was selected.

All the designed NN regression models achieved good performances
for the whole dataset, as attested by the mean coefficient of determina-
tion, 𝑅2, values reported from the ES models of the buildings. Indeed,
the mean 𝑅2 value obtained for these models was 0.849, while 50% of
them achieved values of over 0.90, and 25% over 0.93. This confirms
the consistency of the hypothesis reported in Section 3, whereby it is
assumed that the electrical load of DC is basically only depends on the
outdoor air temperature. The performance of the proposed methodol-
ogy slightly exceeds that of the most widely adopted algorithm for ES
in the literature, that is, when an iterative procedure is used to find the
best fit of a two-segment linear regression [9], which achieved a mean
𝑅2 equal to 0.822.

5.3. Post-processing

Finally, as one model had been selected for each building, the
Energy Audit step was performed. The objective of this step is twofold:
(i) to calculate the Energy Signature and, (ii) to conduct the KPI
Analysis. In fact, the NN regression models, presented in Section 3, were
designed to both provide the relationships among the mean daily load
and the outdoor temperature (i.e. ES), and to allow the characteristic
parameters of the building to be extracted.

A subset of the ES of eight buildings, obtained from the Energy
Signature block, are shown in Fig. 10, along with the real temperature
and load values recorded over the year of the analysis. The following
models were selected for this subset of buildings, by means of the
Fit and Significance Analysis: (i) three buildings with a single cooling
regime regression model (i.e. Buildings E, F, and H); (ii) four buildings
with a double cooling regimes regression model (i.e. Buildings B, C, D
and G); and, finally, one regression featuring a three-cooling regimes
regression model (i.e. Building A).

It is worth noting that the slope of the ES increases moving from
the lower temperature interval regime the higher temperatures ones
when multiple EP exist in a regression model. Indeed, each of the
multiple ReLU-activated perceptrons contributes to the final output
as its activation threshold is overcome. The contribution of each NN
branch to the final output is depicted in Fig. 11 to highlight this
behavior, for the case study of Building A. The NN regression model
selected for this building was 𝐴3. It should be noted that the axis
corresponds to the values of the input and output of the NN, which are
the input and output values of the regression, scaled to 0 to 1 range.
Below the lower BP, which occurs, in this case, at around 0.2, the only
contribution to the final output is provided by the bias of the output
layer, namely 𝑏𝑜𝑢𝑡. After successive EP are overcome at around 0.43
and 0.63, additional contributions of the ReLU-activated perceptrons
are summed and this leads to the progressive, although discretized,
increment of the line slope. In this case, the contribution of the sigmoid-
activated branch is zero for the whole input domain, as this branch is
frozen in this model.

The methodology also allows the energy KPIs characterizing each
building to be extracted via the KPI Analysis block. Generally, the
investigated buildings reported a 𝑇𝐵𝑃 mean value equal to 13.8 °C. Less
than 20% of the buildings reported a 𝑇𝐵𝑃 higher than 17 °C. Finally, a
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few DCs are characterized by extremely low balance points, even below
10 °C. To this extent, it should be pointed out that DCs can feature
extremely dense internal heat generation. This means that cooling may
be needed even though the indoor air temperature is much higher
than the outdoor one. The indoor air temperature is assumed to be
equal to the set point, which, for the investigated DCs, was set equal
to 29 °C by the energy managers to ensure the prolonged life of the
equipment [27]. By recalling Eq. (9), it can be noted that the BP is
depending on 𝑇𝑆𝑃 , the internal heat generation, and on the thermal
sensitivity of the building, as depicted in the following equation:

𝑇𝐵𝑃 = 𝑇𝑆𝑃 −
𝑃𝑇𝐿𝐶
𝑘𝑇𝑂𝑇

(40)

Since 𝑇𝑆𝑃 is given and is equal for all the DC, the values of 𝑇𝐵𝑃
may be interpreted by only considering 𝑃𝑇𝐿𝐶 and 𝑘𝑇𝑂𝑇 . The thermal
behavior of DC can easily be understood by looking at Fig. 12, where
the experimental results retrieved for Building 𝐵 are reported. This
plot clearly shows three regions that are described hereafter. Region
𝐴 is the unconditioned region, which is characterized by a thermal
flux through the envelope toward the external environment that is able
to balance the internal heat generation. Region 𝐵 instead is where
the cooling system intervenes, as the outdoor temperature overcomes
𝑇𝐵𝑃 , in order to keep the indoor air temperature below the set point,
𝑇𝑆𝑃 . Nevertheless, heat transmission through the envelope still plays
a role in removing heat from the building. The wider Region 𝐵 is, the
higher the potential savings can be achieved by means of a free cooling
system [28]. Finally, Region 𝐶 in Fig. 12 corresponds to the building
condition in which the thermal flux through the envelope, 𝜙𝑇 , reverses,
since the outdoor temperature is higher than the indoor one, which is
kept constant and equal to 𝑇𝑆𝑃 . In this case, the cooling system has to
tackle both the above-mentioned contributions.

Considering the retrofit scenario in which the building envelope
is modified to increase thermal flux through the walls (i.e. increasing
𝑘𝑇𝑂𝑇 ), the yellow line, 𝜙𝑇 , would feature a steeper tilt. Since 𝑇𝑆𝑃 would
not be modified, this would cause a rise in 𝑇𝐵𝑃 . In this case, less energy
would be wasted if the outdoor air temperature were below the 𝑇𝑆𝑃 .
On the other hand, the electrical load would rapidly rise for hot days.
However, the building envelope and its internal heat generation are not
the only factors that can affect the electrical consumption caused by the
conditioning of DC. Indeed, the thermal fluxes reported in Fig. 12 do
not take into account the efficiency of the cooling system itself.

As stated in Section 2.1, the proposed KPI 𝛽∗𝑇 𝑒𝑚𝑝 is intended to
describe this particular building behavior. Considering the lower tem-
perature cooling regime, the values retrieved by the methodology attest
that a typical DC features a 𝛽∗𝑇 𝑒𝑚𝑝 equal to 0.027 59 °C−1. These values
re more easily understood if they are expressed as a percentage of
ase load. So, the electrical demand for cooling increases by 2.76%∕°C

for any temperature above 𝑇𝐵𝑃 . For all those cases in which mul-
tiple cooling regimes are considered, the 𝛽∗𝑇 𝑒𝑚𝑝 values recorded for
higher temperature regions are higher than those recorded for lower
temperatures. For instance, Building 𝐴 features 𝛽∗𝑇 𝑒𝑚𝑝 values equal
to 0.0101 °C−1, 0.0232 °C−1, and 0.0383 °C−1, respectively, for the first,
second, and third cooling regime regions. This means the load increases
in the first cooling region by 1.01%, with respect to the base load,
as the outdoor temperature rises by one °C. Furthermore, the COP
of the cooling system of any region can be estimated by considering
Eq. (14). The COP values are 3.9, 1.7, and 1.1, with regard to the
three cooling regions, respectively. These values appear reasonable as,
if more than one chiller is available, the energy management system
would initially activate the most efficient one, while the second one
would only be called upon to intervene whenever the former was not
capable of dealing with the whole thermal load, and so on.

Similarly, Building C features two 𝛽∗𝑇 𝑒𝑚𝑝 values equal to 0.0077 °C−1

and 0.0280 °C−1. These values correspond to COP values of around 7.1
and 2.0. The former may seem improbable but considering the adoption

of free cooling systems [29] in many DC and taking into account
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Fig. 10. The best NN regression models retrieved for a subset of buildings from the real-world dataset.
the range of temperatures where this value holds valid, namely from
around 11 °C up to about 20 °C [30], it represents clear evidence of the
adoption of such a system within the investigated building.

Considering the extracted KPI, the energy audit procedure may be
used to enhance comparative analyses with the aim of detecting possi-
ble inefficient buildings and the relative causes of their inefficiencies.
With regard to the buildings reported in Fig. 10, Buildings 𝐶 and 𝐹
appear to be the most virtuous ones, as only slight load increases
are recorded as the outdoor temperature rises. Building 𝐻 instead is
characterized by an extremely high load demand of the cooling system
for high outdoor temperatures, as its consumption values may exceed
the base load by 70% during hot days. In fact, the KPI Analysis shows
that the estimated COP for this building is 1.2. Similar inefficiencies
may be described for Buildings 𝐴 and 𝐸. In the former case, this issue
is relevant for the second and third cooling regimes regions, while the
building appears to perform more efficiently for low temperatures. In
other cases, the main factor that determines the low efficiency of the
14
building is the low BP, which results in a frequent activation of the
cooling system, even in mild weather months. This is the case of Build-
ings 𝐵 and 𝐷. Building 𝐺 is also affected by a frequent activation of the
cooling system. In this case, a higher overall efficiency is guaranteed by
the good performance of the system itself, as a COP equal to 3.7 was
estimated by the procedure.

As mentioned above, the regression model featuring a sigmoid-
activated perceptron to describe the cooling system activation step only
resulted to be significant for one building in the dataset. Indeed, setting
this configuration for the rest of the buildings does not enhance the
regression accuracy. In fact, the flex of the sigmoid is often pushed
outside the input domain and the weight from the sigmoid-activated
perceptron to the output layer, 𝑤2,𝑠𝑡𝑒𝑝, depicted extremely low values.
This configuration resulted as stable and significant for the case study
whose regression model is shown in Fig. 13, along with the single
contributions of the perceptrons of the employed network. In this case,
the activation step of the cooling system is clearly described by the
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Fig. 11. The contribution of each hidden layer perceptron to the calculation of the
final output of the NN, regarding the application of the 3 cooling regimes regression
model on Building A.

Fig. 12. Estimated contributions of thermal balance of a DC, retrieved through the
application of the proposed methodology to Building E.

contribution of the sigmoid-activated perceptron. Furthermore, one
ReLU-activated perceptron becomes active as the outdoor temperature
increases. Considering the theoretical background expressed in Sec-
tion 3.2, it is expected that the BP temperature and the step regarding
the activation of the cooling system could overlap. This expectation
was verified by considering the evolution of the estimated position
of the elbow and flex from the regression model reported in Fig. 14.
After about 200 epochs, the positions of these points converge to a
value of about 21.5 °C. Thereafter, their position acquires stability,
and the models converge to their optimal training. This building is
characterized by medium efficiency. Indeed, the performance of the
cooling system is affected by the high impact of 𝛥𝑃𝑎𝑐𝑡,𝐶𝐿𝐶 , which
consists of about the same load consumption as the base load. On the
other hand, low consumption values are recorded for many months due
to the high value of 𝑇𝐵𝑃 , which determines an infrequent activation of
the cooling system.
15
Fig. 13. The contribution of each hidden layer perceptron to the calculation of the final
output of the NN, regarding the application of the NN including a sigmoid-activated
perceptron of a building taken from the dataset.

Fig. 14. Evolution of the position of the flex and elbow points over the NN training
epochs.

6. Conclusion and future work

A simple and effective ML tool, based on Feed-Forward NN, is
proposed to calculate ES and the energy KPIs by only considering
the aggregated electrical load of building premises and the outdoor
temperature. This methodology can be used to support the widespread
application of energy audits and enhances the awareness of the energy
behavior and potential inefficiencies of buildings without sensorization.
Several NN regression models have been designed to describe the
different possible thermal behaviors of a building. The NN regression
models were set up to take into account the eventual existence of
multiple cooling regimes and to handle possible discontinuities due to
the activation of the cooling system. Appropriate fit and significance
scores were introduced to support the selection of the best NN regres-
sion model. Moreover, the methodological framework enhances the
extraction of fundamental information from the bias and connection
weights of NN. Indeed, it was used to calculate the following KPIs: (i)
the BP temperature; (ii) the EP temperature, whenever a multiple cool-
ing region model was selected; (iii) the novel KPI 𝛽∗𝑇 𝑒𝑚𝑝 that accounts
for multiple aspects of the thermal behavior of buildings; and (iv) the
cooling system COP, calculated for all the identified cooling regions.
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The methodology has been tested on a real case dataset from an
energy-intensive industrial sector, namely TLC. It was applied consider-
ing around 80 DC, and was able to produce accurate results, achieving
a mean 𝑅2 of 0.849, and to accurately detect the significant cool-
ing regimes. Besides, the mean BP temperature retrieved through the
methodology was 13.8 °C. Above this threshold, the electrical demand
of the buildings rose considerably, as the mean estimated 𝛽∗𝑇 𝑒𝑚𝑝 was
.76%. In those cases in which multiple cooling regimes existed, the
OP values showed higher values regarding the lower temperatures
onditioning regions. First, this analysis has confirmed the fundamental
ole of the cooling load in the total electrical demand of the investigated
uildings. In particular, as we tested the methodology by considering
ndustrial buildings featuring relevant internal heat generation, it was
bserved that the cooling system intervenes even with mild outdoor
ir temperatures. Consequently, the opportunity to adopt free cooling
ystems may represent a valuable energy efficiency measure, as it can
ubstantially reduce the number of hours chillers are used. Even so,
hillers will be needed in cases where free cooling is not capable
f handling the whole thermal load, as well as when the outdoor
emperature increases over a certain threshold, thus hindering the
ossibility of employing the former system. In this regard, this analysis
ay support the identification of possible retrofit actions regarding the

xisting cooling systems, as it allows the calculation of two efficiency
ndexes, namely 𝐶𝑂𝑃 and 𝛽∗𝑇 𝑒𝑚𝑝, regarding multiple cooling regimes
f any building whose total daily electrical demand is measured. In
ddition, the proposed methodology could also be adopted considering
ifferent types of energy carriers, and different types of ES, for instance,
onsidering heating ES, and applied to different case studies.

Future works will take into account the validation of the KPI es-
imated value, derived by means of NN. Moreover, an automated
election of the possible retrofit actions could provide a fundamental
xtension of the outcomes of this investigation. Finally, the regression
odels employed could be further improved by including additional

nput weather variables. Such an approach, which we refer to as
ultivariate ES, should consider in particular those variables that can

ffect the thermal behavior of buildings, for instance, solar radiation.
ince the latter variable can be of particular importance for other case
tudies, for instance from the residential and commercial sector, its
nalysis and inclusion in the models are of special interest with the
im of widespread of the proposed approach, both regarding cooling
nd heating ES.
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