This paper presents a novel Neural Network (NN) based control strategy for DC-DC Buck converters aiming to enhance the dynamic system response in face of external disturbances. The proposed controller employs a compact multilayer perceptron, and it is trained online through supervised learning strategy. Its ground-truth labels correspond to the optimal control actions that minimize the converter output voltage error. This results in a tiny NN, paving the way for embedded hardware implementations. The validation of the proposed NN-based controller is conducted via circuital simulations, demonstrating significant improvements in transient response compared to conventional control techniques.

A Neural Network-Based Controller for DC-DC Buck Converter for Improved Resilience / Nikiforos, Lorenzo; Gabriele, Francesco; Prono, Luciano; Pareschi, Fabio; Setti, Gianluca. - STAMPA. - (2025), pp. 1-4. ( 20th International Conference on PhD Research in Microelectronics and Electronics, PRIME 2025 Taormina (Ita) 21-24 September 2025) [10.1109/prime66228.2025.11203368].

A Neural Network-Based Controller for DC-DC Buck Converter for Improved Resilience

Nikiforos, Lorenzo;Gabriele, Francesco;Prono, Luciano;Pareschi, Fabio;Setti, Gianluca
2025

Abstract

This paper presents a novel Neural Network (NN) based control strategy for DC-DC Buck converters aiming to enhance the dynamic system response in face of external disturbances. The proposed controller employs a compact multilayer perceptron, and it is trained online through supervised learning strategy. Its ground-truth labels correspond to the optimal control actions that minimize the converter output voltage error. This results in a tiny NN, paving the way for embedded hardware implementations. The validation of the proposed NN-based controller is conducted via circuital simulations, demonstrating significant improvements in transient response compared to conventional control techniques.
2025
979-8-3315-0390-1
File in questo prodotto:
File Dimensione Formato  
PRIME2025-sericsfair.pdf

accesso aperto

Descrizione: Author's version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 535.76 kB
Formato Adobe PDF
535.76 kB Adobe PDF Visualizza/Apri
A_Neural_Network-Based_Controller_for_DC-DC_Buck_Converter_for_Improved_Resilience.pdf

accesso riservato

Descrizione: Editorial version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 517.78 kB
Formato Adobe PDF
517.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3005595