Concept-based eXplainable AI (C-XAI) is a rapidly growing research field that enhances AI model interpretability by leveraging intermediate, human-understandable concepts. This approach not only enhances model transparency but also enables human intervention, allowing users to interact with these concepts to refine and improve the model’s performance. Concept Bottleneck Models (CBMs) explicitly predict concepts before making final decisions, enabling interventions to correct misclassified concepts. While CBMs remain effective in Out-Of-Distribution (OOD) settings with intervention, they struggle to match the performance of black-box models. Concept Embedding Models (CEMs) address this by learning concept embeddings from both concept predictions and input data, enhancing In-Distribution (ID) accuracy but reducing the effectiveness of interventions, especially in OOD scenarios. In this work, we propose the Variational Concept Embedding Model (V-CEM), which leverages variational inference to improve intervention responsiveness in CEMs. We evaluated our model on various textual and visual datasets in terms of ID performance, intervention responsiveness in both ID and OOD settings, and Concept Representation Cohesiveness (CRC), a metric we propose to assess the quality of the concept embedding representations. The results demonstrate that V-CEM retains CEM-level ID performance while achieving intervention effectiveness similar to CBM in OOD settings, effectively reducing the gap between interpretability (intervention) and generalization (performance).

V-CEM: Bridging Performance and Intervenability in Concept-Based Models / De Santis, Francesco; Ciravegna, Gabriele; Bich, Philippe; Giordano, Danilo; Cerquitelli, Tania. - 2576:(2026), pp. 48-67. ( 3rd World Conference on Explainable Artificial Intelligence, xAI 2025 Istanbul (TUR) July 9–11, 2025) [10.1007/978-3-032-08317-3_3].

V-CEM: Bridging Performance and Intervenability in Concept-Based Models

Francesco De Santis;Gabriele Ciravegna;Philippe Bich;Danilo Giordano;Tania Cerquitelli
2026

Abstract

Concept-based eXplainable AI (C-XAI) is a rapidly growing research field that enhances AI model interpretability by leveraging intermediate, human-understandable concepts. This approach not only enhances model transparency but also enables human intervention, allowing users to interact with these concepts to refine and improve the model’s performance. Concept Bottleneck Models (CBMs) explicitly predict concepts before making final decisions, enabling interventions to correct misclassified concepts. While CBMs remain effective in Out-Of-Distribution (OOD) settings with intervention, they struggle to match the performance of black-box models. Concept Embedding Models (CEMs) address this by learning concept embeddings from both concept predictions and input data, enhancing In-Distribution (ID) accuracy but reducing the effectiveness of interventions, especially in OOD scenarios. In this work, we propose the Variational Concept Embedding Model (V-CEM), which leverages variational inference to improve intervention responsiveness in CEMs. We evaluated our model on various textual and visual datasets in terms of ID performance, intervention responsiveness in both ID and OOD settings, and Concept Representation Cohesiveness (CRC), a metric we propose to assess the quality of the concept embedding representations. The results demonstrate that V-CEM retains CEM-level ID performance while achieving intervention effectiveness similar to CBM in OOD settings, effectively reducing the gap between interpretability (intervention) and generalization (performance).
2026
9783032083166
9783032083173
File in questo prodotto:
File Dimensione Formato  
978-3-032-08317-3_3.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3005351