We present a data-driven anomaly detection framework for satellite telemetry, enhancing space mission assurance by identifying faults without labeled data, enabling early detection and increased reliability in dynamic orbital environments.

AI-Driven Anomaly Detection in Satellite Telemetry for Space Mission Assurance / Buccellato, Federico; Nicolini, Davide; Vacca, Eleonora; Sterpone, Luca. - ELETTRONICO. - (2025). (Intervento presentato al convegno IEEE Radiation and Its Effects on Components and Systems 2025 tenutosi a Antwerp, Belgium nel 29 September to 03 October - 2025).

AI-Driven Anomaly Detection in Satellite Telemetry for Space Mission Assurance

Buccellato, Federico;Nicolini, Davide;Vacca, Eleonora;Sterpone, Luca
2025

Abstract

We present a data-driven anomaly detection framework for satellite telemetry, enhancing space mission assurance by identifying faults without labeled data, enabling early detection and increased reliability in dynamic orbital environments.
File in questo prodotto:
File Dimensione Formato  
RADECS25.pdf

accesso riservato

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 484.62 kB
Formato Adobe PDF
484.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3000981