We present a data-driven anomaly detection framework for satellite telemetry, enhancing space mission assurance by identifying faults without labeled data, enabling early detection and increased reliability in dynamic orbital environments.
AI-Driven Anomaly Detection in Satellite Telemetry for Space Mission Assurance / Buccellato, Federico; Nicolini, Davide; Vacca, Eleonora; Sterpone, Luca. - ELETTRONICO. - (2025). (Intervento presentato al convegno IEEE Radiation and Its Effects on Components and Systems 2025 tenutosi a Antwerp, Belgium nel 29 September to 03 October - 2025).
AI-Driven Anomaly Detection in Satellite Telemetry for Space Mission Assurance
Buccellato, Federico;Nicolini, Davide;Vacca, Eleonora;Sterpone, Luca
2025
Abstract
We present a data-driven anomaly detection framework for satellite telemetry, enhancing space mission assurance by identifying faults without labeled data, enabling early detection and increased reliability in dynamic orbital environments.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RADECS25.pdf
accesso riservato
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
484.62 kB
Formato
Adobe PDF
|
484.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/3000981