Ensuring reliable execution of Deep Neural Networks (DNNs) is crucial for safety-critical applications. Traditional software-based approaches fail to capture real-world fault scenarios, overlooking accelerator datapath effects. We propose a hardware-aware, software-based fault injection platform that emulates systolic array processing, enabling effective fault propagation analysis without the overhead of time-consuming methods.
Hardware-Aware Software-Based Fault Injection Platform for DNN Accelerators / Vacca, Eleonora; Buccellato, Federico. - ELETTRONICO. - (2025), pp. 220-221. (Intervento presentato al convegno 22st ACM International Conference on Computing Frontiers tenutosi a Cagliari (ITA) nel 28-30 May 2025) [10.1145/3719276.3727952].
Hardware-Aware Software-Based Fault Injection Platform for DNN Accelerators
Vacca, Eleonora;Buccellato, Federico
2025
Abstract
Ensuring reliable execution of Deep Neural Networks (DNNs) is crucial for safety-critical applications. Traditional software-based approaches fail to capture real-world fault scenarios, overlooking accelerator datapath effects. We propose a hardware-aware, software-based fault injection platform that emulates systolic array processing, enabling effective fault propagation analysis without the overhead of time-consuming methods.File | Dimensione | Formato | |
---|---|---|---|
cf25_41.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
566.32 kB
Formato
Adobe PDF
|
566.32 kB | Adobe PDF | Visualizza/Apri |
3719276.3727952.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
585.36 kB
Formato
Adobe PDF
|
585.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2999707