Additive manufacturing (AM) is a layerwise production process that creates three-dimensional objects according to a digital model. This technology has demonstrated to be a promising alternative to conventional manufacturing methods for various industrial sectors, such as aerospace, automotive, biomedical, and energy. AM offers several advantages, like design flexibility, material efficiency, functional integration, and rapid prototyping. As regards metal parts, conventional AM techniques using infrared laser sources face some limitations in processing high-reflectivity and high-conductivity materials or alloys, such as aluminum, copper, gold, and silver. These materials have low absorption of infrared radiation, which results in unstable and shallow melt pools, poor surface quality, and high porosity. To overcome these challenges, green and blue laser sources have been proposed for AM processes. This review provides an overview of the recent developments and applications of green and blue laser sources for powder bed fusion of copper and its alloys, focusing on the effects of process parameters on the melt pool dynamics, microstructure formation, and thermal and electrical properties of the fabricated parts. This review also presents the main applications of AM of copper and its alloys together with potential opportunities for future developments.

On the Use of Green and Blue Laser Sources for Powder Bed Fusion: State of the Art Review for Additive Manufacturing of Copper and Its Alloys / Khandpur, Mankirat Singh; Giubilini, Alberto; Iuliano, Luca; Minetola, Paolo. - In: METALS. - ISSN 2075-4701. - ELETTRONICO. - 14:12(2024). [10.3390/met14121464]

On the Use of Green and Blue Laser Sources for Powder Bed Fusion: State of the Art Review for Additive Manufacturing of Copper and Its Alloys

Khandpur, Mankirat Singh;Giubilini, Alberto;Iuliano, Luca;Minetola, Paolo
2024

Abstract

Additive manufacturing (AM) is a layerwise production process that creates three-dimensional objects according to a digital model. This technology has demonstrated to be a promising alternative to conventional manufacturing methods for various industrial sectors, such as aerospace, automotive, biomedical, and energy. AM offers several advantages, like design flexibility, material efficiency, functional integration, and rapid prototyping. As regards metal parts, conventional AM techniques using infrared laser sources face some limitations in processing high-reflectivity and high-conductivity materials or alloys, such as aluminum, copper, gold, and silver. These materials have low absorption of infrared radiation, which results in unstable and shallow melt pools, poor surface quality, and high porosity. To overcome these challenges, green and blue laser sources have been proposed for AM processes. This review provides an overview of the recent developments and applications of green and blue laser sources for powder bed fusion of copper and its alloys, focusing on the effects of process parameters on the melt pool dynamics, microstructure formation, and thermal and electrical properties of the fabricated parts. This review also presents the main applications of AM of copper and its alloys together with potential opportunities for future developments.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2996327
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo