In recent years, the demand for compact deep neural networks (DNN s) has increased consistently, driven by the necessity to deploy them in environments with limited resources such as mobile or embedded devices. Our work aims to tackle this challenge by proposing a combination of two techniques: sparsification and t ernarization o f network parameters. We extend the plain binarization by introducing a sparsification interval centered around O. The network parameters falling in this interval are set to 0 and effectively removed from the net-work topology. Despite the increased complexity required by the ternarization scheme compared to a binary quantizer, we obtain remarkable sparsity rates that yield parameter distri-butions with significantly compressible sources with entropy lower than 1 bits/symbol.
Sparsification of Deep Neural Networks via Ternary Quantization / Dordoni, Luca; Migliorati, Andrea; Fracastoro, Giulia; Fosson, Sophie; Bianchi, Tiziano; Magli, Enrico. - (2024), pp. 1-6. (Intervento presentato al convegno 34th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2024 tenutosi a London (UK) nel 2024) [10.1109/mlsp58920.2024.10734714].
Sparsification of Deep Neural Networks via Ternary Quantization
Dordoni, Luca;Migliorati, Andrea;Fracastoro, Giulia;Fosson, Sophie;Bianchi, Tiziano;Magli, Enrico
2024
Abstract
In recent years, the demand for compact deep neural networks (DNN s) has increased consistently, driven by the necessity to deploy them in environments with limited resources such as mobile or embedded devices. Our work aims to tackle this challenge by proposing a combination of two techniques: sparsification and t ernarization o f network parameters. We extend the plain binarization by introducing a sparsification interval centered around O. The network parameters falling in this interval are set to 0 and effectively removed from the net-work topology. Despite the increased complexity required by the ternarization scheme compared to a binary quantizer, we obtain remarkable sparsity rates that yield parameter distri-butions with significantly compressible sources with entropy lower than 1 bits/symbol.File | Dimensione | Formato | |
---|---|---|---|
Sparsification of Deep Neural Networks via Ternary Quantization_OA.pdf
accesso aperto
Descrizione: author's version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
Sparsification_of_Deep_Neural_Networks_via_Ternary_Quantization.pdf
accesso riservato
Descrizione: published version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995346