Extending a construction due to B. Segre, we give a negative answer to a question of Koiran and Skomra about Hessians, motivated by Kayal’s algorithm for the equivalence problem to the Fermat polynomial. We conjecture that our counterexamples are the only ones. We also study a local version of their question.
On the Koiran-Skomra’s question about Hessians / Ballico, E.; Ventura, E.. - 805:(2024), pp. 109-124. (Intervento presentato al convegno Proceedings of the AMS-EMS-SMF Special Session on Deformations of Artinian Algebras and Jordan Type tenutosi a Grenoble (France) nel July 18–22, 2022) [10.1090/conm/805/16129].
On the Koiran-Skomra’s question about Hessians
Ventura E.
2024
Abstract
Extending a construction due to B. Segre, we give a negative answer to a question of Koiran and Skomra about Hessians, motivated by Kayal’s algorithm for the equivalence problem to the Fermat polynomial. We conjecture that our counterexamples are the only ones. We also study a local version of their question.| File | Dimensione | Formato | |
|---|---|---|---|
| Ballico-Ventura-On the Koiran-Skomra_s question-CONM.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										399.75 kB
									 
										Formato
										Adobe PDF
									 | 399.75 kB | Adobe PDF | Visualizza/Apri | 
| On the Koiran-Skomra’s question about Hessians.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										272.5 kB
									 
										Formato
										Adobe PDF
									 | 272.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995204
			
		
	
	
	
			      	