Power Delivery Network (PDN) optimization is crucial for guaranteeing adequate power integrity performance in modern microprocessor systems. In this work, we introduce a novel surrogate modeling workflow for efficiently predicting the worst-case voltage droop occurring at the loading points of a PDN including a set of free design parameters. We apply the proposed approach for modeling the impact of a set of decoupling capacitors on the performance of a template PDN structure.
Efficient Parametric Assessment of Worst-Case Voltage Droop in Power Delivery Networks / Bradde, Tommaso; Carlucci, Antonio; Trinchero, Riccardo; Manfredi, Paolo; Grivet-Talocia, Stefano. - ELETTRONICO. - (2024). (Intervento presentato al convegno 2024 IEEE 33rd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a Toronto (Can) nel 06-09 October 2024) [10.1109/epeps61853.2024.10754453].
Efficient Parametric Assessment of Worst-Case Voltage Droop in Power Delivery Networks
Bradde, Tommaso;Carlucci, Antonio;Trinchero, Riccardo;Manfredi, Paolo;Grivet-Talocia, Stefano
2024
Abstract
Power Delivery Network (PDN) optimization is crucial for guaranteeing adequate power integrity performance in modern microprocessor systems. In this work, we introduce a novel surrogate modeling workflow for efficiently predicting the worst-case voltage droop occurring at the loading points of a PDN including a set of free design parameters. We apply the proposed approach for modeling the impact of a set of decoupling capacitors on the performance of a template PDN structure.| File | Dimensione | Formato | |
|---|---|---|---|
| cnf-2024-epeps-droop.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										7.52 MB
									 
										Formato
										Adobe PDF
									 | 7.52 MB | Adobe PDF | Visualizza/Apri | 
| cnf-2024-epeps-droop-IEEE-1-mini.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										9.31 MB
									 
										Formato
										Adobe PDF
									 | 9.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2995141
			
		
	
	
	
			      	