Power Delivery Network (PDN) optimization is crucial for guaranteeing adequate power integrity performance in modern microprocessor systems. In this work, we introduce a novel surrogate modeling workflow for efficiently predicting the worst-case voltage droop occurring at the loading points of a PDN including a set of free design parameters. We apply the proposed approach for modeling the impact of a set of decoupling capacitors on the performance of a template PDN structure.

Efficient Parametric Assessment of Worst-Case Voltage Droop in Power Delivery Networks / Bradde, Tommaso; Carlucci, Antonio; Trinchero, Riccardo; Manfredi, Paolo; Grivet-Talocia, Stefano. - ELETTRONICO. - (2024). (Intervento presentato al convegno 2024 IEEE 33rd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a Toronto (Can) nel 06-09 October 2024) [10.1109/epeps61853.2024.10754453].

Efficient Parametric Assessment of Worst-Case Voltage Droop in Power Delivery Networks

Bradde, Tommaso;Carlucci, Antonio;Trinchero, Riccardo;Manfredi, Paolo;Grivet-Talocia, Stefano
2024

Abstract

Power Delivery Network (PDN) optimization is crucial for guaranteeing adequate power integrity performance in modern microprocessor systems. In this work, we introduce a novel surrogate modeling workflow for efficiently predicting the worst-case voltage droop occurring at the loading points of a PDN including a set of free design parameters. We apply the proposed approach for modeling the impact of a set of decoupling capacitors on the performance of a template PDN structure.
2024
979-8-3503-5123-1
File in questo prodotto:
File Dimensione Formato  
cnf-2024-epeps-droop.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 7.52 MB
Formato Adobe PDF
7.52 MB Adobe PDF Visualizza/Apri
cnf-2024-epeps-droop-IEEE-1-mini.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 9.31 MB
Formato Adobe PDF
9.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2995141