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Abstract—Power Delivery Network (PDN) optimization is cru-
cial for guaranteeing adequate power integrity performance in
modern microprocessor systems. In this work, we introduce a
novel surrogate modeling workflow for efficiently predicting the
worst-case voltage droop occurring at the loading points of a
PDN including a set of free design parameters. We apply the
proposed approach for modeling the impact of a set of decoupling
capacitors on the performance of a template PDN structure.

Index Terms—Power Delivery Networks, Decoupling Capaci-
tors, Machine Learning

I. INTRODUCTION

Power Integrity (PI) optimization is crucial for achieving
target performance in terms of efficiency and reliability of
modern microprocessor systems. With current technologies,
careful assessments of the Power Delivery Network (PDN)
electrical performance must be necessarily performed at the
system level. In this view, one challenging task in PI is the
minimization of the PDN power noise, and in particular, of the
voltage droop resulting from the dynamic activity of its loads.
Most commonly, this performance specification is met by de-
signing the PDN with the objective of bounding its impedance
magnitude below a (possibly frequency-dependent) threshold,
known as target impedance [1] [2] [3]. Optimizing a PDN to
achieve minimal voltage droops can be challenging and time
consuming, as any design configuration must be ultimately
verified in time domain, possibly interlacing extremely costly
transient analyses with the impedance shaping routine, in order
to actually verify the entity of the droop under the operating
conditions of interest.

This contribution introduces a surrogate modeling approach
thought to alleviate the above-mentioned computational issues.
In particular, we propose an efficient approach for directly
predicting the worst-case voltage droop (WCVD) of a PDN
as a function of the relevant design parameters, assuming
that the load currents are bounded in amplitude and slew-
rate. The approach expands on the recent numerical tools
introduced in [4], that allow to compute directly the voltage
droop without relying on any costly transient simulations.
Exploiting these tools, we compute the WCVD of the PDN
for a discrete number of design parameters configurations,
and we exploit this information as input for generating a
surrogate model which predicts the desired performance index
efficiently, throughout the whole design space. The surrogate
is obtained by applying Gaussian Process Regression (GPR),
which is a machine learning approach that allows reproduc-

ing a complex functional relationship using a relatively low
amount of training data [5]. Numerical experiments based on
a template PDN description provide a proof of concept for the
efficacy and efficiency of the proposed approach.

II. PROBLEM STATEMENT

We consider a generic Linear Time Invariant (LTI) PDN
structure, subject to independent current stimuli acting in
correspondence of P well-defined electrical ports, representing
its loading points. We allow the PDN description to include
a number ρ of free design parameters, collected in the vector
x = [x1, . . . , xρ]

T ⊂ X , where X is a hyperectangle defining
the allowed domain of variation. We denote as Z(s,x) ∈
CP×P the parameterized output impedance matrix of the PDN
defined at the loading points, and we assume that Z(s,x) can
be sampled at discrete frequency-parameter configurations, via
real or virtual measurements.

Let us denote the impulse response as z(t,x) =
L−1{Z(s,x)}, the vector of load current sources entering the
PDN as i(t), and the corresponding port voltages as v(t).
Then, the convolution integral

v(t,x) =

∫ t

0

z(τ,x)i(t− τ)dτ = (z(x) ⋆ i)(t), (1)

provides the instantaneous voltage droop of the PDN for any
admissible design and load profile. Our objective is to generate
a surrogate model for efficiently predicting the WCVD of the
PDN as a function of the parameters, assuming load currents
that are bounded in amplitude and slew rate. Formally, we
desire a surrogate representation for the following function

y(x) = sup
t≥0,i(t)∈I

||v(t,x)||∞, (2)

where I denotes the set of admissible load current stimuli

I = {i(t) : 0 ≤ |ij(t)| ≤ Ij,max,

∣∣∣∣dij(t)dt

∣∣∣∣ ≤ ∆max,

∀t ≥ 0, j = 1, . . . , P}. (3)

Notice that for step transitions 0 ↔ Imax the slew-rate
constraint implies a minimum rise time τr = Imax/∆max.

III. SURROGATE MODEL GENERATION

The proposed modeling workflow is based on two main
steps. The first consists in the generation of a dataset of
pairs D = {(xk, yk)}Kk=1, with yk = y(xk), obtained by



evaluating (2) at discrete parameter values xk ∈ X . The
second exploits this dataset to generate the GPR model.

A. Dataset Extraction

1) Voltage Droop Computation: Given a design parameter
configuration xk, the exact computation of the corresponding
bound y(xk) would require constructing the worst-case load
current signal, as outlined in [6], and simulating the PDN
response in the time domain applying such load profile. To
avoid this expensive procedure, in this contribution we apply
the simplified approach described in [4], which is equivalent
for practical purposes. Specifically, we evaluate (2) as

y(xk) = max
i=1,...,P

vi,max(xk), (4)

vi,max(xk) =

P∑
j=1

Ij,max

∫ ∞

0

|(zij(xk) ⋆ gτr )(t)|+dt (5)

where gτr (t) is a unit-area square pulse having width τr and
|a|+ is equal to a if a ≥ 0 and is 0 otherwise. See [4, Sec.II-B]
for technical details. Assuming that a closed form expression
for z(t,xk) is available, the target value y(xk) is obtained via
numerical integration of (5). Most commonly, the numerical or
experimental characterization of the PDN behavior is available
only terms of measurements of the corresponding impedance
matrix Z(s,x). In this scenario, a closed form approximation
for z(t,xk) can be retrieved via rational fitting, using a set of
measurements of the kind Vk = {(jωm,Z(jωm,xk))}Mm=1,
with ωm = 2πfm, fm ∈ [fmin, fmax]. The measurements are
used as input for the Vector Fitting iteration [7] to generate a
stable (yet not necessarily passive) approximation Z̃k(s) for
the PDN impedance, with structure

Z̃k(s) =

ℓ̄∑
ℓ=1

Rℓ

s− pℓ
≈ Z(s,xk). (6)

An approximation for the required impulse response is ob-
tained via analytical inverse Laplace transform

z̃k(t) = L−1{Z̃k(s)} =

ℓ̄∑
ℓ=1

Rℓ e
pℓt ≈ z(t,xk), (7)

and can be used in place of z(t,xk) in (5) to compute the
desired sample y(xk).

B. Modeling via Gaussian Process regression

Once the dataset D is available, we use it to train a GPR
model. We choose GPR because it offers a good trade-off
between model accuracy and complexity, providing a flexible
model with limited training cost. We consider a standard im-
plementation with a constant prior trend β0 and an anisotropic
Matérn 5/2 covariance function, i.e.,

k(x,x′) = σ2

(
1 +

√
5u+

5

3
u2

)
exp

(
−
√
5u

)
, (8)

where

u =

√√√√ ρ∑
j=1

(xj − x′
j)

2

θ2j
(9)

TABLE I
VARIABILITY RANGES OF DESIGN PARAMETERS

C2 /nF C3 /µF C4 /µF C5 /µF R2−5 /mΩ L2−5 /pH
[50, 150] [1, 100] [0.1, 10] [0.01, 1] 25± 30% 1± 90%

and θ1, . . . , θρ are unknown scale parameters. The covari-
ance function describes the correlation between two points
in the input space, x and x′, which translates into the model
smoothness. Owing to the complexity of the target function,
an anisotropic kernel (in which the scale parameter differs
for each input parameter) turns out to be substantially more
accurate, at the expense of a slight increase of the training
cost. The WCVD is predicted as

ŷ(x) = β0 +

K∑
k,m=1

[
K̃−1

]
km

(ym − β0)k(x,xk). (10)

In (10), K̃ is a matrix with entries K̃km = k(xk,xm)+σ2
nδkm,

for k,m = 1, . . . ,K, where δkm is the Kronecker’s delta and
σ2
n is a noise parameter that acts as a regularizer. It should

be noted that the size of K̃ is determined by the available
data samples and usually does not need to be substantially
increased, even for larger input spaces [5]. The coefficient β0

is obtained via a generalized least-square estimate as

β0 =
eTK̃−1y

eTK̃−1e
, (11)

where e ∈ RK = (1, . . . , 1)T is a column vector of ones and
y = (y1, . . . , yK)T is the vector of data samples. The scale
parameters {θj}ρj=1, the noise variance σ2

n, and the kernel
variance σ2 are estimated via likelihood maximization.

IV. NUMERICAL RESULTS

We provide a proof of concept for the proposed ap-
proach considering a 2-D distributed structure, representa-
tive of a template PDN on a printed circuit board. The
board consists of two parallel square planes with side length
l = 7.5 cm, separated by a dielectric material of width
d = 0.5 mm. The dielectric has relative permittivity ϵr =
5.5 and loss tangent tan δ = 0.01. Five ideal (lumped)
ports are defined between top and bottom planes at coordi-
nates {(0, 3.8), (3, 3), (2.7, 3), (3, 2.7), (3.3, 3)}, defined in
cm taking the bottom left corner of the board as the origin.

We close port #1 on a Voltage Regulator Module (VRM),
modeled as a RL series circuit with RVRM = 2 mΩ and
LVRM = 1 nH. Port #2 is considered as the loading point
of the PDN, and closed on a RC series circuit representing
a simplified silicon die model (with Rdie = 50 mΩ and
Cdie = 5 nF) in parallel with a decoupling capacitor. With
the remaining ports left open, the impedance of the structure
is shown in Fig. 1 (blue line). We assume ports #2 to #5
be shunted with four decoupling capacitors. The latter are
modeled as series RLC circuits, whose lumped element values
are the design parameters of interest. Table I reports the
admissible parameter ranges, using subscripts to identify the



Fig. 1. The output impedance of the considered template PDN. The blue line
shows the bare impedance without decoupling capacitors. The red line shows
the impedance loaded by with a random admissible choice of such capacitors.

Fig. 2. Correlation plot of the reference data against the predictions obtained
via the GPR model built with Ktrain=1000 training samples.

components reference ports. The PDN impedance obtained
with one random design choice is shown in Fig. 1 (red line).

Our objective is to predict the WCVD of the PDN as a
function of these parameters when the loading point is subject
to a load current with maximum amplitude Imax = 1 A and
minimum rise time τr = 3 ns. To this aim, we generate
the dataset D with K = 2500, defining the sampling points
{xk}Kk=1 using a Sobol sequence. For each sampling point,
we retrieve the rational model (6) approximating the output
impedance of the PDN and we compute the corresponding
worst-case droop according to (4), (5). The data are then
divided into disjoint training and test sets, denoted as Dtrain =
{(xj , yj)}Ktrain

j=1 and Dtest = {(xi, yi)}Ktest
i=1 , where we set

Ktrain = 1000 and Ktest = 1500. Using Dtrain, the GPR
model is trained in 40 s on a common laptop.

The scatter plot of the GPR predictions against the test
samples is shown in Fig. 2 and proves the remarkable accuracy
of the surrogate, exhibiting a coefficient of determination of

R2 = 1−
∑Ktest

i=1 (yi − ŷ(xi))
2∑Ktest

i=1 (yi − ȳ)
2

= 0.98, (12)

where ȳ is the dataset mean. Using the model, a batch of
1000 test samples is computed in 66 ms, against the 54 s
required by directly computing (5). This confirms that also
in case of the considered academic example the proposed
approach provides major improvements in terms of efficiency.
To conclude, following the approach presented in [4], for each

Fig. 3. Grey lines: WCVD waveforms associated to the test samples. The
blue line is the voltage droop signal corresponding to the best design. Red and
black dashed lines are the corresponding exact and surrogate WCVD bounds.

test sample, we build the worst-case current giving rise to the
WCVD, and compute the associated voltage responses (1),
over a timespan of 5 µs. Figure 3 shows the ensemble of
these responses over a restricted time window. The solid red
line marks the WCVD for the best design among the test
configurations, and shows that the bound is actually attained
by the corresponding voltage droop waveform (blue solid line);
the GPR prediction deviates by 0.5% from the reference.

V. CONCLUSIONS

This work introduced a novel approach for fast parametric
assessment of the WCVD occurring in a PDN under con-
strained load current profiles. The proposed method combines
GPR surrogate modeling with established numerical tools,
enabling efficient prediction of the considered performance
index for the sake of design verification and optimization.
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