Recently, a modification of fractional entropy based on the inverse Mittag-Leffler function (MLF) was proposed by Zhang and Shang (2021). In this paper, we present an extension of the fractional cumulative entropy (FCE) and obtain some further results about this measure. We study new equivalent expressions, bounds, stochastic ordering, and properties of dynamic generalized FCE. By using the empirical approach, we give an estimator of this measure and study large sample properties of it. In addition, the validity of this new measure is supported by numerical simulations on logistic map equations. Finally, an application of this measure is proposed in the evaluation of MRI scans for brain cancer.
Results on a Generalized Fractional Cumulative Entropy / Foroghi, F.; Tahmasebi, S.; Afshari, M.; Buono, F.. - In: SANKHYA. SERIES A. - ISSN 0976-836X. - 86:1(2024), pp. 138-163. [10.1007/s13171-023-00316-8]
Results on a Generalized Fractional Cumulative Entropy
Buono F.
2024
Abstract
Recently, a modification of fractional entropy based on the inverse Mittag-Leffler function (MLF) was proposed by Zhang and Shang (2021). In this paper, we present an extension of the fractional cumulative entropy (FCE) and obtain some further results about this measure. We study new equivalent expressions, bounds, stochastic ordering, and properties of dynamic generalized FCE. By using the empirical approach, we give an estimator of this measure and study large sample properties of it. In addition, the validity of this new measure is supported by numerical simulations on logistic map equations. Finally, an application of this measure is proposed in the evaluation of MRI scans for brain cancer.File | Dimensione | Formato | |
---|---|---|---|
s13171-023-00316-8.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
853.7 kB
Formato
Adobe PDF
|
853.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
GFCE 230523.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994629