Self-organizing memristive nanowire (NW) networks are promising candidates for neuromorphic-type data processing in a physical reservoir computing framework because of their collective emergent behavior, which enables spatiotemporal signal processing. However, understanding emergent dynamics in multiterminal networks remains challenging. Here experimental spatiotemporal characterization of memristive NW networks dynamics in multiterminal configuration is reported, analyzing the activation and relaxation of network’s global and local conductance, as well as the inherent spatial nonlinear transformation capabilities. Emergent effects are analyzed i)during activation, by investigating the spatiotemporal dynamics of the electric field distribution across the network through voltage mapping; ii) during relaxation, by monitoring the evolution of the conductance matrix of the multiterminal system. The multiterminal approach also allowed monitoring the spatial distribution of nonlinear activity, demonstrating the impact of different network areas on the system’s information processing capabilities. Nonlinear transformation tasks are experimentally performed by driving the network into different conductive states, demonstrating the importance of selecting proper operating conditions for efficient information processing. This work allows a better understanding of the local nonlinear dynamics in NW networks and their impact on the information processing capabilities, providing new insights for a rational design of self-organizing neuromorphic systems.
Emerging Spatiotemporal Dynamics in Multiterminal Neuromorphic Nanowire Networks Through Conductance Matrices and Voltage Maps / Pilati, Davide; Michieletti, Fabio; Cultrera, Alessandro; Ricciardi, Carlo; Milano, Gianluca. - In: ADVANCED ELECTRONIC MATERIALS. - ISSN 2199-160X. - ELETTRONICO. - (2024). [10.1002/aelm.202400750]
Emerging Spatiotemporal Dynamics in Multiterminal Neuromorphic Nanowire Networks Through Conductance Matrices and Voltage Maps
Davide Pilati;Fabio Michieletti;Carlo Ricciardi;Gianluca Milano
2024
Abstract
Self-organizing memristive nanowire (NW) networks are promising candidates for neuromorphic-type data processing in a physical reservoir computing framework because of their collective emergent behavior, which enables spatiotemporal signal processing. However, understanding emergent dynamics in multiterminal networks remains challenging. Here experimental spatiotemporal characterization of memristive NW networks dynamics in multiterminal configuration is reported, analyzing the activation and relaxation of network’s global and local conductance, as well as the inherent spatial nonlinear transformation capabilities. Emergent effects are analyzed i)during activation, by investigating the spatiotemporal dynamics of the electric field distribution across the network through voltage mapping; ii) during relaxation, by monitoring the evolution of the conductance matrix of the multiterminal system. The multiterminal approach also allowed monitoring the spatial distribution of nonlinear activity, demonstrating the impact of different network areas on the system’s information processing capabilities. Nonlinear transformation tasks are experimentally performed by driving the network into different conductive states, demonstrating the importance of selecting proper operating conditions for efficient information processing. This work allows a better understanding of the local nonlinear dynamics in NW networks and their impact on the information processing capabilities, providing new insights for a rational design of self-organizing neuromorphic systems.File | Dimensione | Formato | |
---|---|---|---|
Adv Elect Materials - 2024 - Pilati - Emerging Spatiotemporal Dynamics in Multiterminal Neuromorphic Nanowire Networks.pdf
accesso aperto
Descrizione: Emerging Spatiotemporal Dynamics in Multiterminal Neuromorphic Nanowire Networks
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2994402