In this work, we present a modeling procedure for studying periodic structures with a hexagonal lattice. We extend two numerical methods to hexagonal unit cells: the multi-modal transfer matrix method and the method of moments. Both methods are capable of obtaining complex solutions of the eigenproblem. The results of the two methods are found to be in excellent agreement for both the passband and stopband modes.

Numerical Validation of the Multi-Modal Transfer Matrix Method for Hexagonal Unit Cells / Petek, M.; Vasquez, Jorge Alberto Tobon; Valerio, G.; Mesa, F.; Quevedo-Teruel, O.; Vipiana, F.. - (2024), pp. 617-618. (Intervento presentato al convegno 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI) tenutosi a Firenze nel 14-19 July 2024) [10.1109/ap-s/inc-usnc-ursi52054.2024.10685934].

Numerical Validation of the Multi-Modal Transfer Matrix Method for Hexagonal Unit Cells

Petek, M.;Vasquez, Jorge Alberto Tobon;Vipiana, F.
2024

Abstract

In this work, we present a modeling procedure for studying periodic structures with a hexagonal lattice. We extend two numerical methods to hexagonal unit cells: the multi-modal transfer matrix method and the method of moments. Both methods are capable of obtaining complex solutions of the eigenproblem. The results of the two methods are found to be in excellent agreement for both the passband and stopband modes.
2024
979-8-3503-6990-8
File in questo prodotto:
File Dimensione Formato  
APS_2024(5).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 499.52 kB
Formato Adobe PDF
499.52 kB Adobe PDF Visualizza/Apri
Numerical_Validation_of_the_Multi-Modal_Transfer_Matrix_Method_for_Hexagonal_Unit_Cells.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 570.05 kB
Formato Adobe PDF
570.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2994370