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Abstract—In this work, we present a modeling procedure
for studying periodic structures with a hexagonal lattice. We
extend two numerical methods to hexagonal unit cells: the multi-
modal transfer matrix method and the method of moments.
Both methods are capable of obtaining complex solutions of the
eigenproblem. The results of the two methods are found to be in
excellent agreement for both the passband and stopband modes.

I. INTRODUCTION

The study of periodic structures with a hexagonal unit cell
has gained significant attention in the fields of material science
and engineering [1], as well as in the domain of microwave
engineering more recently [2]–[4]. A notable property of such
structures is high isotropy [1], [3]. Commercial eigenmode
solvers are generally used to analyze their dispersion proper-
ties. However, these solvers are not able to directly provide
information on stopband attenuation, which is crucial for a
comprehensive understanding of the periodic structure. Previ-
ously, we reported a method to obtain this information through
the multi-modal transfer matrix method (MMTMM) [5] and
the method of moments (MoM) [6], but the analysis was
limited to rectangular unit cells.

In this work, we present and validate two different modeling
approaches for periodic structures with a hexagonal unit cell.
The first approach is an extension on the MMTMM [5] and
the second on the MoM [6]. Both are able to obtain modal so-
lutions with complex-valued wavevectors. Their applicability
is demonstrated on a mirror-symmetric holey structure.

II. MODELLING

In the application of the MMTMM, we first obtain the
coupling between multiple port modes defined at the edge of a
convenient supercell [4]. In the present work, CST frequency
domain solver is used with hexahedral meshing. The use of
the supercell is necessary as it allows all ports to be aligned
with the Cartesian axes, a requirement set by the solver. The
scattering matrix is then transformed into a transfer matrix to
pose the following eigenproblem, as in [5]:
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where [T] is the transfer matrix and Vx,y and Ix,y are the
effective voltages and currents of the port modes. Information
on propagation and attenuation of the electromagnetic field is
contained in the phase shifts φx = kxpx and φy = kypy , where
kx and ky are the complex wavevector components, and px
and py are the x and y periods of the supercell, as depicted
in Fig. 1(c).

Equation (1) can be reformulated as a homogeneous system
in V and I. Numerical solutions (φx, φy) can be computed by
searching for complex zeros of the determinant of the matrix
of the system. Alternatively, when φx or φy are constant, the
problem can be reformulated as a linear eigenproblem [7], for
which there are efficient zero-search algorithms, available in
most numerical packages.

The MoM modeling to find the dispersion relation of
hexagonal cells closely follows the approach presented in [6],
as a solution of the following system:

[Z][I] = [0] (2)

where [Z] is the impedance matrix, whose elements are a
function of the frequency and the wavevector, and [I] contains
the coefficients of the (unknown) basis functions of the electric
surface current density. The main difference with [6] is in the
definition of the lattice vectors as

s1 = [a, 0, 0] (3)

and
s2 = [a cos (π/3), a sin (π/3), 0] , (4)

where a is the width of the hexagon. Therefore, the unit cell
used with the MoM is a rhombus, as depicted in Fig. 1(b),
which is an alternative to the hexagonal primitive cell depicted
in Fig. 1(a).

III. NUMERICAL RESULTS

The results for passband modes of the MMTMM and MoM
simulations can be verified with the commercial solver HFSS
Eigenmode Solver (HFSS ES). For validation purposes, a
supercell is used with HFSS ES, although a simulation of a
primitive cell would also be possible. For MoM, the mesh in
Fig. 1(b) is used for simulation. Its size is about one tenth
of the wavelength at 25 GHz. The real part of the dispersion
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Fig. 1: Geometries under study: (a) hexagonal primitive unit cell, (b) rhombus
primitive unit cell (MoM mesh), (c) and the super cell used with MMTMM.

Fig. 2: Dispersion diagram obtained with the three methods. The scanned Bril-
louin zones are depicted in dashed line in the inset. The dimensions are in mil-
limeters: a= px = 8.7, h= 5.22, d= 5.394, g= 0.05, py = 2 px cos(π/6).

diagram is presented in Fig. 2. For supercell simulations, ad-
ditional modes appear [4]. For the MoM simulation, obtaining
the dispersion diagram of the supercell requires scanning two
sections of the Brillouin zone: the irreducible Brillouin zone
of the primitive unit cell ΓMKΓ (represented in orange cross
markers), and its image M′ΓPM′ (represented in blue plus
markers), as in [4]. The vertical dashed line from about 15-
22 GHz at M belongs to an evanescent mode. Its attenuation
is presented in Fig. 3, with an excellent agreement between
MoM and MMTMM.

IV. CONCLUSION AND PERSPECTIVES

In this work, two methods for obtaining both real and
imaginary parts of the wavevector in hexagonal structures
are presented. Both approaches yield similar results for the
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Fig. 3: Attenuation in ΓM. The dimensions are given in Fig.2.

mirror-symmetric holey unit cell under study, verifying the
applicability of the methods. This development allows for
a further in-depth exploration of periodic structures with a
hexagonal lattice.

ACKNOWLEDGEMENT
This publication is based upon work from COST Action

SyMat (CA18223), by the Horizon Europe Research and
Innovation Program under the GENIUS Project, agreement
no. 101072560, and in part by the project PON Research
and Innovation ”Microwave Imaging and Detection powered
by Artificial Intelligence for Medical and Industrial Appli-
cations (DM 1062/21),” funded by the MUR. It is also
supported by Unite! – University Network for Innovation,
Technology and Engineering. The work of F. Mesa has been
partially funded by the Grant PID2020-116739GB-I00 funded
by MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] A. H. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K.
Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81,
pp. 109–162, 1 2009.

[2] J. D. de Pineda, A. P. Hibbins, and J. R. Sambles, “Microwave edge
modes on a metasurface with glide symmetry,” Phys. Rev. B, vol. 98, p.
205426, Nov 2018.

[3] S. Yang, O. Zetterstrom, Z. Xue, F. Mesa, and O. Quevedo-Teruel,
“Hexagonal higher-symmetric dielectric periodic structures for planar
graded-index lenses,” Appl. Phys. Lett., vol. 123, no. 1, p. 011707, 07
2023.

[4] S. Yang, O. Zetterstrom, F. Mesa, and O. Quevedo-Teruel, “Dispersion
Analysis of Metasurfaces With Hexagonal Lattices With Higher Symme-
tries,” IEEE J. Microw., pp. 1–12, 2023.

[5] F. Mesa, G. Valerio, R. Rodriguez-Berral, and O. Quevedo-Teruel,
“Simulation-Assisted Efficient Computation of the Dispersion Diagram
of Periodic Structures: A comprehensive overview with applications to
filters, leaky-wave antennas and metasurfaces,” IEEE Antennas Propag.
Mag., vol. 63, no. 5, pp. 33–45, 2020.

[6] M. Petek, J. Rivero, J. A. T. Vásquez, G. Valerio, O. Quevedo-Teruel,
and F. Vipiana, “Method of Moments for the Dispersion Modelling of
Glide-Symmetric Periodic Structures,” IEEE Transactions on Antennas
and Propagation, pp. 1–1, 2023.

[7] F. Giusti, Q. Chen, F. Mesa, M. Albani, and O. Quevedo-Teruel, “Effi-
cient Bloch Analysis of General Periodic Structures With a Linearized
Multimodal Transfer-Matrix Approach,” IEEE Trans. Antennas Propag.,
vol. 70, no. 7, pp. 5555–5562, 2022.


