The increasing adoption of connectivity and electronic components in vehicles makes these systems valuable targets for attackers. While automotive vendors prioritize safety, there remains a critical need for comprehensive assessment and analysis of cyber risks. In this context, this paper proposes a Social Media Automotive Threat Intelligence (SOCMATI) framework, specifically designed for the emerging field of automotive cybersecurity. The framework leverages advanced intelligence techniques and machine learning models to extract valuable insights from social media. Four use cases illustrate The framework’s potential by demonstrating how it can significantly enhance threat assessment procedures within the automotive industry.

Can social media shape the security of next-generation connected vehicles? / Scarano, Nicola; Mannella, Luca; Savino, Alessandro; DI CARLO, Stefano. - (2024), pp. 1-4. (Intervento presentato al convegno 2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS) tenutosi a Rennes (FRA) nel 3-5 July 2024) [10.1109/IOLTS60994.2024.10616053].

Can social media shape the security of next-generation connected vehicles?

Scarano Nicola;Mannella Luca;Savino Alessandro;Di Carlo Stefano
2024

Abstract

The increasing adoption of connectivity and electronic components in vehicles makes these systems valuable targets for attackers. While automotive vendors prioritize safety, there remains a critical need for comprehensive assessment and analysis of cyber risks. In this context, this paper proposes a Social Media Automotive Threat Intelligence (SOCMATI) framework, specifically designed for the emerging field of automotive cybersecurity. The framework leverages advanced intelligence techniques and machine learning models to extract valuable insights from social media. Four use cases illustrate The framework’s potential by demonstrating how it can significantly enhance threat assessment procedures within the automotive industry.
2024
979-8-3503-7055-3
File in questo prodotto:
File Dimensione Formato  
Can_social_media_shape_the_security_of_next-generation_connected_vehicles.pdf

non disponibili

Descrizione: Post-print Editorial Version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 208.83 kB
Formato Adobe PDF
208.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Paper___IOLTS24___SS_Automotive_Security_and_Safety___Sentiment_Analysis.pdf

accesso aperto

Descrizione: Post print version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 149.97 kB
Formato Adobe PDF
149.97 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2993131