Neutral atom platforms are analogue quantum simulators that offer the possibility to map graphs onto a 2D qubit register using programmable Rubidium atoms arrays, whosevalence electrons’ energy state is used as qubits, using optical tweezers. This makes it possible to implement algorithms for solving graph combinatorial optimization and Quantum Machine Learning (QML) tasks, such as graph classification. However, the restrictions of real hardware, as well as the very low number of publicly available machines, make such implementation non trivial. In this work, we manage to compute the Quantum Evolution Kernel (QEK) to extract the features from graphs of the PROTEINS dataset using the 256-qubits Aquila platform (available through AWS) and then we apply classical Machine Learning (ML) techniques for the final classification. The method is benchmarked against classical kernels, resulting in slightly better performance, proving the effectiveness of the method, even in the case of a noisy quantum simulator.
Harnessing a 256-qubit Neutral Atom Simulator for Graph Classification / Giusto, Edoardo; Iurlaro, Gabriele; Montrucchio, Bartolomeo; Scionti, Alberto; Terzo, Olivier; Vercellino, Chiara; Vitali, Giacomo; Viviani, Paolo. - ELETTRONICO. - (2024), pp. 296-305. (Intervento presentato al convegno 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) tenutosi a Montreal (CA) nel September 15–20, 2024) [10.1109/QCE60285.2024.00043].
Harnessing a 256-qubit Neutral Atom Simulator for Graph Classification
Giusto, Edoardo;Iurlaro, Gabriele;Montrucchio, Bartolomeo;Scionti, Alberto;Vercellino, Chiara;Vitali, Giacomo;Viviani, Paolo
2024
Abstract
Neutral atom platforms are analogue quantum simulators that offer the possibility to map graphs onto a 2D qubit register using programmable Rubidium atoms arrays, whosevalence electrons’ energy state is used as qubits, using optical tweezers. This makes it possible to implement algorithms for solving graph combinatorial optimization and Quantum Machine Learning (QML) tasks, such as graph classification. However, the restrictions of real hardware, as well as the very low number of publicly available machines, make such implementation non trivial. In this work, we manage to compute the Quantum Evolution Kernel (QEK) to extract the features from graphs of the PROTEINS dataset using the 256-qubits Aquila platform (available through AWS) and then we apply classical Machine Learning (ML) techniques for the final classification. The method is benchmarked against classical kernels, resulting in slightly better performance, proving the effectiveness of the method, even in the case of a noisy quantum simulator.| File | Dimensione | Formato | |
|---|---|---|---|
| output.pdf accesso aperto 
											Descrizione: Published paper
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										765.01 kB
									 
										Formato
										Adobe PDF
									 | 765.01 kB | Adobe PDF | Visualizza/Apri | 
| Harnessing_DEN_Models_for_Quantum_Computing_Tasks_on_Neutral_Atom_QPUs.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										729.32 kB
									 
										Formato
										Adobe PDF
									 | 729.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2992950
			
		
	
	
	
			      	