This paper introduces a Yukawa-Calderon time-domain combined field integral equation for electromagnetic scattering by a perfect electric conductor. The time-domain electric and magnetic field integral operators are composed with Yukawa-type integral operators. The linearly combined formulation is well-conditioned when the spatial discretization is dense, and it is also free from interior resonant frequencies. Several numerical results corroborate the properties of the proposed formulation.

A Yukawa-Calderón Time-Domain Combined Field Integral Equation for Electromagnetic Scattering / Le, Van Chien; Cordel, Pierrick; Andriulli, Francesco P.; Cools, Kristof. - ELETTRONICO. - (2023), pp. 292-295. (Intervento presentato al convegno 24th International Conference on Electromagnetics in Advanced Applications (ICEAA) tenutosi a Venice (Italy) nel 09-13 October 2023) [10.1109/iceaa57318.2023.10297732].

A Yukawa-Calderón Time-Domain Combined Field Integral Equation for Electromagnetic Scattering

Cordel, Pierrick;Andriulli, Francesco P.;
2023

Abstract

This paper introduces a Yukawa-Calderon time-domain combined field integral equation for electromagnetic scattering by a perfect electric conductor. The time-domain electric and magnetic field integral operators are composed with Yukawa-type integral operators. The linearly combined formulation is well-conditioned when the spatial discretization is dense, and it is also free from interior resonant frequencies. Several numerical results corroborate the properties of the proposed formulation.
2023
979-8-3503-2058-9
File in questo prodotto:
File Dimensione Formato  
A_Yukawa-Caldern_Time-Domain_Combined_Field_Integral_Equation_for_Electromagnetic_Scattering.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 589.66 kB
Formato Adobe PDF
589.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
8412_acc.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 670.8 kB
Formato Adobe PDF
670.8 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2992544