The detection and study of vibrations play a fundamental role in the monitoring and safety of engineering systems. This is especially true in the aerospace sector, where the operating environment is often hostile, and the constraints on weights and dimensions are very tight. For these reasons, the research and application of sensors based on optical signal transmission are becoming increasingly important. The opportunity to implement distributed measurements along a single optical fiber, the small size and weight, and the high resistance to electromagnetic interference make this technology an ideal candidate for the development of next-generation aerial platforms. In this paper, the authors focus on designing and developing a novel sensor that employs Fiber Bragg Grating (FBG) for vibration detection. Their primary aim is to explore the potential and constraints of this technology and build an initial prototype for testing purposes. Additionally, the project enabled the authors to experiment with rapid prototyping techniques that rely on 3D printing and additive manufacturing. The impact of various design choices, such as materials, geometry, and manufacturing, on the demonstrator sensitivity was explored by analysing the problem mathematically. A Matlab script was developed to estimate dimensions, weights, and dynamic performances, and modelling FEM was used for validation.
Rapid prototyping of FBG-based optical sensors for vibration analysis of mechatronic systems / Dalla Vedova, M. D. L.; Quattrocchi, Gaetano; Aimasso, Alessandro; Marotta, Antonio; Ferro, C. G.; Maggiore, P.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - ELETTRONICO. - 2698:(2024). (Intervento presentato al convegno 15th International AIVELA Conference on Vibration Measurements by Laser and Noncontact Techniques, AIVELA 2023 tenutosi a Milano nel 2023) [10.1088/1742-6596/2698/1/012004].
Rapid prototyping of FBG-based optical sensors for vibration analysis of mechatronic systems
Dalla Vedova M. D. L.;Quattrocchi Gaetano;Aimasso Alessandro;Ferro C. G.;Maggiore P.
2024
Abstract
The detection and study of vibrations play a fundamental role in the monitoring and safety of engineering systems. This is especially true in the aerospace sector, where the operating environment is often hostile, and the constraints on weights and dimensions are very tight. For these reasons, the research and application of sensors based on optical signal transmission are becoming increasingly important. The opportunity to implement distributed measurements along a single optical fiber, the small size and weight, and the high resistance to electromagnetic interference make this technology an ideal candidate for the development of next-generation aerial platforms. In this paper, the authors focus on designing and developing a novel sensor that employs Fiber Bragg Grating (FBG) for vibration detection. Their primary aim is to explore the potential and constraints of this technology and build an initial prototype for testing purposes. Additionally, the project enabled the authors to experiment with rapid prototyping techniques that rely on 3D printing and additive manufacturing. The impact of various design choices, such as materials, geometry, and manufacturing, on the demonstrator sensitivity was explored by analysing the problem mathematically. A Matlab script was developed to estimate dimensions, weights, and dynamic performances, and modelling FEM was used for validation.File | Dimensione | Formato | |
---|---|---|---|
AIVELA_June_2023_MDV.pdf
accesso aperto
Descrizione: Full Paper
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
809.86 kB
Formato
Adobe PDF
|
809.86 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2991499