Efficient service provisioning in the Edge-to-Cloud Continuum is of utmost importance for modern applications. While sensible decisions can be taken if enough monitoring data is collected, maintaining continuous telemetry data streams amidst the continuum's complexity is challenging. This paper introduces CRISP (reConstructing Resource Information for Service Placement), a solution combining data reconstruction and service placement strategies to optimize decisions despite incomplete monitoring data. CRISP utilizes Convolutional Neural Networks and Long Short-Term Memory models for data reconstruction, integrating them with a heuristic algorithm that selects nodes for service component placement. Numerical results demonstrate CRISP's efficacy in optimizing service provisioning despite missing data, contributing to enhanced resource utilization and service performance in the considered context.
Recovering Missing Monitoring Data to Enhance Service Provisioning in the Edge-to-Cloud Continuum / Francesco Pittalà, Gaetano; Zilli, Cristian; Di Cicco, Nicola; Davoli, Gianluca; Sacco, Alessio. - ELETTRONICO. - (2024), pp. 25-30. (Intervento presentato al convegno 2024 IEEE 10th International Conference on Network Softwarization (NetSoft) tenutosi a Saint Louis, MO (USA) nel 24-28 June 2024) [10.1109/NetSoft60951.2024.10588941].
Recovering Missing Monitoring Data to Enhance Service Provisioning in the Edge-to-Cloud Continuum
Cristian Zilli;Alessio Sacco
2024
Abstract
Efficient service provisioning in the Edge-to-Cloud Continuum is of utmost importance for modern applications. While sensible decisions can be taken if enough monitoring data is collected, maintaining continuous telemetry data streams amidst the continuum's complexity is challenging. This paper introduces CRISP (reConstructing Resource Information for Service Placement), a solution combining data reconstruction and service placement strategies to optimize decisions despite incomplete monitoring data. CRISP utilizes Convolutional Neural Networks and Long Short-Term Memory models for data reconstruction, integrating them with a heuristic algorithm that selects nodes for service component placement. Numerical results demonstrate CRISP's efficacy in optimizing service provisioning despite missing data, contributing to enhanced resource utilization and service performance in the considered context.File | Dimensione | Formato | |
---|---|---|---|
PVE_SDN__Netsoft__2024___CRISP.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
651.77 kB
Formato
Adobe PDF
|
651.77 kB | Adobe PDF | Visualizza/Apri |
Recovering_Missing_Monitoring_Data_to_Enhance_Service_Provisioning_in_the_Edge-to-Cloud_Continuum.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2991281