Efficient service provisioning in the Edge-to-Cloud Continuum is of utmost importance for modern applications. While sensible decisions can be taken if enough monitoring data is collected, maintaining continuous telemetry data streams amidst the continuum's complexity is challenging. This paper introduces CRISP (reConstructing Resource Information for Service Placement), a solution combining data reconstruction and service placement strategies to optimize decisions despite incomplete monitoring data. CRISP utilizes Convolutional Neural Networks and Long Short-Term Memory models for data reconstruction, integrating them with a heuristic algorithm that selects nodes for service component placement. Numerical results demonstrate CRISP's efficacy in optimizing service provisioning despite missing data, contributing to enhanced resource utilization and service performance in the considered context.

Recovering Missing Monitoring Data to Enhance Service Provisioning in the Edge-to-Cloud Continuum / Francesco Pittalà, Gaetano; Zilli, Cristian; Di Cicco, Nicola; Davoli, Gianluca; Sacco, Alessio. - ELETTRONICO. - (2024), pp. 25-30. (Intervento presentato al convegno 2024 IEEE 10th International Conference on Network Softwarization (NetSoft) tenutosi a Saint Louis, MO (USA) nel 24-28 June 2024) [10.1109/NetSoft60951.2024.10588941].

Recovering Missing Monitoring Data to Enhance Service Provisioning in the Edge-to-Cloud Continuum

Cristian Zilli;Alessio Sacco
2024

Abstract

Efficient service provisioning in the Edge-to-Cloud Continuum is of utmost importance for modern applications. While sensible decisions can be taken if enough monitoring data is collected, maintaining continuous telemetry data streams amidst the continuum's complexity is challenging. This paper introduces CRISP (reConstructing Resource Information for Service Placement), a solution combining data reconstruction and service placement strategies to optimize decisions despite incomplete monitoring data. CRISP utilizes Convolutional Neural Networks and Long Short-Term Memory models for data reconstruction, integrating them with a heuristic algorithm that selects nodes for service component placement. Numerical results demonstrate CRISP's efficacy in optimizing service provisioning despite missing data, contributing to enhanced resource utilization and service performance in the considered context.
2024
979-8-3503-6958-8
File in questo prodotto:
File Dimensione Formato  
PVE_SDN__Netsoft__2024___CRISP.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 651.77 kB
Formato Adobe PDF
651.77 kB Adobe PDF Visualizza/Apri
Recovering_Missing_Monitoring_Data_to_Enhance_Service_Provisioning_in_the_Edge-to-Cloud_Continuum.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2991281