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Abstract—Efficient service provisioning in the Edge-to-Cloud
Continuum is of utmost importance for modern applications.
While sensible decisions can be taken if enough monitoring data is
collected, maintaining continuous telemetry data streams amidst
the continuum’s complexity is challenging. This paper introduces
CRISP (reConstructing Resource Information for Service Place-
ment), a solution combining data reconstruction and service
placement strategies to optimize decisions despite incomplete
monitoring data. CRISP utilizes Convolutional Neural Networks
and Long Short-Term Memory models for data reconstruction,
integrating them with a heuristic algorithm that selects nodes
for service component placement. Numerical results demon-
strate CRISP’s efficacy in optimizing service provisioning despite
missing data, contributing to enhanced resource utilization and
service performance in the considered context.

I. INTRODUCTION

In an era where network services are expected to be more
pervasive than ever, the choice of where to operate the process-
ing required by those services is particularly important. Service
placement strategies have a strong impact on the resulting
performance of the service, both from the point of view of
users (e.g., in terms of perceived latency) and from that of the
network operator (e.g., in terms of power consumed by the
involved equipment).

With the plethora of devices available in the Edge-to-Cloud
Continuum that can potentially be harnessed to provide ser-
vices, optimized service placement becomes a nontrivial task.
Numerous research efforts have been facing the challenges
of service orchestration across the Continuum, proposing
architectures for automated service provisioning [1], as well as
strategies for the fulfillment of performance requirements [2].

Monitoring data plays a fundamental role in assisting
placement strategies, enabling informed choices and dynamic
management of resources. This makes the collection of such
data a particularly crucial duty. Numerous factors, including
network latency, intermittent connectivity, resource constraints
at the edge, and hardware or software failures, can lead
to losing monitoring information, and, in turn, to service
degradation [3]. To mitigate the problem, various solutions
can be applied at different levels [4], [5], with a multitude
of approaches aiming to reconstruct missing information has
been proposed [6]–[10].

Among them, Spatio-Temporal Tensor Completion
(STTC) [8] and Spatio-Temporal Graph Mixformer (STGM)
for traffic forecasting [9] make use of temporal patterns found
in the traffic matrix data to improve the reconstruction process,
with the first employing tensor factorization techniques to
project information to a lower dimensional space, while
the second applies spectral clustering and multi-Gaussian
modeling to identify spatially similar portions of the traffic
data and reconstruct it. Auto-Encoder models and their
variations, for example, have been thoroughly investigated
in this context [6], [11], [12], given their capability to
compress latent information in the data and use it to restore
noisy and/or incomplete input samples. In the case of
reconstruction, convolutional architectures are preferred, not
only because of their training efficiency and robustness against
over-fitting phenomena, but also their superior performance
with multi-dimensional data [13].

The integration of machine learning and AI-driven tech-
niques into service placement frameworks presents both op-
portunities and challenges. While these approaches offer the
potential for enhanced decision-making capabilities and adap-
tive resource management, they also introduce complexities
related to model interpretability, training data quality, and
algorithmic bias. In our problem, we need to predict more
features regarding more nodes, thus learning both spatial and
temporal patterns.

The implications of service placement decisions extend be-
yond immediate performance metrics, encompassing broader
considerations such as energy efficiency, environmental im-
pact, and regulatory compliance. Achieving a holistic un-
derstanding of these multifaceted dynamics is essential for
designing sustainable and resilient network infrastructures.

In this paper, we propose a solution for reConstructing
Resource Information for Service Placement (CRISP), pre-
senting a combination of data reconstruction strategies and
service placement decision policies that aim at maximizing
optimal decisions even with incomplete monitoring data. In
case information for a node is missing, we reconstruct it
using a deep learning model based on Convolutional Neural
Networks (CNN) (in order to extrapolate spatial patterns from
the data, namely correlation between the state of different
nodes) and Long Short-Term Memory (LSTM) (so as to cap-



ture tendencies in the temporal dynamics of the state of each
node). The resulting set of information is employed to select
which nodes to place service components on, using a simple
heuristic-based algorithm. The performance of the monitoring
data reconstruction and that of the service placement decisions
leveraging it are evaluated in this paper, showing the benefits
of the approach.

Our contributions are structured as follows:
• We propose CRISP, a solution for service allocation in

the Edge-to-Cloud Continuum using partial monitoring
information (Section II);

• We design a CNN-LSTM model for the reconstruction of
incomplete telemetry data (Section III);

• We demonstrate that CRISP can effectively enhance
service orchestration performance (Section IV);

• We summarize our main conclusions and outline future
work (Section V).

II. CRISP: SYSTEM DESIGN AND OVERVIEW

A conceptual architecture of the reference orchestration
system is represented in Fig. 1, along with the interactions
among functional elements required for service deployment.
The orchestrator consists of two layers at two different levels
of abstraction. The topmost one, denoted as Service Or-
chestration (SO), comprises the processes involved in the
composition of abstracted service components according to
requests coming from users and service placement policies.
The second layer, denoted as Resource Orchestration (RO),
comprises the processes in charge of collecting, processing,
and adapting the information coming from the resources1

in the underlying infrastructure, to provide it to the service
orchestration processes. As the difference in the size of the two
layers in Fig. 1 suggests, the focus of this work is primarily on
the latter one, with an effort to contextualize the reconstruction
of monitoring data in a service orchestration architecture,
and evaluate its impact on the overall service provisioning
performance.

As previously mentioned, the role of the functional elements
in the SO layer is that of taking placement decisions for
service components, by means of algorithms that enforce the
placement policy of choice, based on information provided
by the RO layer through appropriate abstraction models. The
details of the functional elements that operate within the SO
layer, as well as the description of the interactions between the
SO and RO layers, are in line with the architecture described
in [14], and are omitted from this paper as they are not required
for the understanding of the data reconstruction dynamics.

The core element of the RO layer is the Resource in-
telligence element, which is tasked with the reconstruction
of incomplete monitoring data using AI (more details on
this in Section III), consuming information coming from the
infrastructure (M3) and providing an enhanced version of it
to service placement processes (M4). Gathering such data is

1We use the term “resource” to include all possible service allocation tar-
gets, which mainly include computing nodes distributed across the Continuum,
but in general it may also include different items, e.g., programmable switches.

Fig. 1. CRISP reference architecture with interactions among functional
elements, where M stands Monitoring and P for placement.

a job for the Resource monitoring, which collects information
from the underlying resources handling the monitoring pro-
cesses running on them (M1, M2). Conversely, supplying the
processed monitoring data to the SO layer is a responsibility
of the Resource aggregator, which provides the abstractions
needed to the service orchestration processes, presenting the
available resources (along with their monitoring information)
as abstracted service components (M5). Once placement de-
cisions are taken (P1), the Resource management element
can handle the deployment and decommissioning of service
components through the Resource connector element (P2, P3),
which provides the technology-specific endpoints [15] for the
orchestrator to interact with the underlying infrastructure.

We underline that end-to-end service provisioning incurs
numerous limitations of technological and administrative na-
ture. Technological issues are addressed by common APIs that
allow monitoring and management processes to access diverse
resources. Administrative issues include the fact that different
tenants are unlikely to allow access to their domains to a
centralized orchestrator entity. This should be addressed by
agreements on the different parties to exchange information
and management rights to portions of their infrastructures,
of shared deployed services. This is out of the scope of this
paper, in which we assume to operate on the portion of the
infrastructure owned by a single tenant.

Orchestration processes in the SO layer make placement
decisions based on the available information on underlying
resources, according to the requirements posed by service
requests and by context-dependent policies. Although it might
be argued that this is an interesting application for AI/ML –



Algorithm 1: Service placement with Load Balancing
policy

Input : set R of computing resources, R =
{ri | i ∈ N ∧ i ≤ amount of comp. resources};
current status s of each resource as a
collection of metrics,
s(r) = {CPU, RAM, etc.} ,∀r ∈ R; service
placement policy p;

Output: service placement decision d
1 if R = ∅ then
2 d← block

3 else if |R| = 1 then
4 d← the only available resource

5 else
6 Create the ordered set Rload

O by sorting elements of
R by their occupation metrics, in lexicographic
ordering (CPU, then RAM, then disk, then
bandwidth)

7 d← the first element of Rload
O

and we agree, having investigated that in [16] – in this work,
we want to isolate the effect of ML-based reconstruction of
incomplete monitoring data, so we employ a simple heuristic
to implement a placement decision policy. We refer to this
policy as Load balancing (LB), as it aims at evenly distributing
the computational load given by a series of service deploy-
ments across the available resources. The service placement
algorithm implementing the LB policy is illustrated in Alg. 1.
In case there are no available resources or only one feasible
choice, the placement decision is straightforward. Otherwise,
the result of the algorithm is based on an ordering of the
possible service deployment targets (i.e., the computation
resources) in terms of their computation metrics (e.g., CPU,
RAM, etc.), with the final choice falling on the resource that
is the least active at the moment.

III. RECONSTRUCTION MODEL

In this paper, we specifically address the problem of esti-
mating future resource usage starting from partially available
information. While the field of information reconstruction is
rich in solutions of different natures, going from mathemati-
cal and statistical approaches to machine learning and deep
learning models, the input data is typically modeled as a
multi-dimensional vector, either in the form of tensor-like
structures or time series. Examples of mathematical models
for spatial reconstruction like LMAFit [17] and LRTC [18]
represent a general approach for a wide range of (matrix)
data completion and estimation problems based on the low-
rank matrix factorization technique. Recent machine learning
architectures allow relaxing such assumptions and can learn
either temporal or spatial patterns in input data. Given this
flexibility and the heterogeneity of data in our system, we
consider a deep learning solution, and in particular, our model

is a combination of Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) networks.

CNNs [19] are a sensible choice for multi-dimensional
data (e.g., images), because of their reduced computational
complexity and their innate regularization capability compared
to fully connected networks. These properties are a natural
consequence of two key factors: (i) the replacement of fully
connected layers with strided convolutional layers, which not
only reduce the number of trainable parameters but also
efficiently encode spatial patterns and (ii) pooling layers,
which further compress the hidden information.

LSTM networks [20] are a subclass of Recurrent Neural
Networks (RNN) engineered to address the problem of the
vanishing gradient [21] common to traditional recurrent archi-
tectures. They achieve their objective by adding gated units
responsible for holding and controlling the flow of information
during the back-propagation process. The flexibility of LSTMs
in capturing long-term dependencies makes them a powerful
tool in various domains, ranging from sequence modeling
to time series prediction. In this latter case, LSTMs predict
future values based on historical data, with an approach that
is applicable in finance, weather forecasting, and stock price
prediction [22], [23].

Convolutional LSTM is the result of combining the building
blocks of CNN and LSTM. This architecture suits the case at
hand because of its inherited properties and spatio-temporal
nature, being able to capture both the dynamism across time
and the spatial correlation of the node metrics. Such a model
is: (i) trained to predict the resource state matrix of all
nodes, provided the same information from previous time
steps is available, and (ii) used to reconstruct the missing
measurements.

The input of the model represents a time series of resource
usage for the nodes in the system. In further detail, at each
time interval, our model receives in input a sequence of the
last k matrices dimensioned as 4×N , where for each node we
store 4 different metrics and N is the number of nodes in the
cluster. Thus, each of the four rows represents a specific metric
for the usage, in order: CPU, RAM, disk, and bandwidth.
In conclusion, the input of the model is a multidimensional
array k × 4 × N . Empirically, we found that using the three
most recent pieces of historical information, i.e., k = 3,
provides a good prediction accuracy. Increasing values of k
led to negligible performance gains, at the cost of substantially
higher training times and resource requirements. Thus, we set
this value as default in the experiments.

IV. ILLUSTRATIVE NUMERICAL RESULTS

In this section we quantify the ability of CRISP to esti-
mate missing values and then, using these values, to allocate
services in a satisfactory way, showing that:

• the CNN-LSTM model adopted in CRISP produces
smaller errors than CNN models;

• CRISP leads to better orchestration performance than the
considered baselines, both in terms of service allocation



accuracy and efficacy, facilitating the deployment of
services over large scale dynamic scenarios.

A. Evaluating the features reconstruction

We benchmark the CNN-LSTM model and compare its
performance to a CNN regression model for our monitoring
data reconstruction task. The CNN-LSTM model consists of
three stacked convolutional LSTM layers, having, respectively,
64, 32, 32 filters sized 3 × 3, and a final convolutional layer
needed for (i) decoding the hidden state and (ii) matching the
shape of the output to the shape of the state matrices. The
CNN model represents a different approach to reconstruction,
using partial information, i.e., incomplete matrices, about the
state of the nodes at a given time in order to infer the
missing values. Missing information in the data was replaced
with placeholder values. Empirically, we found the best com-
position performance-wise for CNN to be as follows: two
convolutional layers having 64 and 32 filters sized 3× 3, two
pooling layers, two fully connected layers with 128, 64 units
and a 4 units wide output layer, which allows for predicting
the usage of CPU, RAM, disk and bandwidth at a particular
node. Both CNN-LSTM and CNN were trained and evaluated
on data following a 75%-25% train-test split. All evaluations
of the reconstruction models are led using the Mean Absolute
Percentage Error and Mean Squared Error metrics, defined as
follows:

MAPE =

N−1∑
i=0

|yti − ypi |
|yti |

, MSE =

N−1∑
i=0

(yti − ypi
)2, (1)

where yti stands for the i-th observed value, ypi
corresponds

to the i-th predicted value, and N denotes the total number
of samples under consideration. MAPE offers an intuitive
description of the performance of the models, while MSE
allows for evaluation from a different standpoint, placing more
emphasis on the occurrence of large errors. Fig. 2 and 3 show
the error values of both models for increasing input sizes,
or node counts, and for different percentages of missing data
from the input matrix of the CNN model (namely 10% and
20%). From our tests, CNN-LSTM is by far the best performer,
producing errors one order of magnitude smaller than CNN
in any condition. Therefore, we choose this architecture as a
component of the following analysis.

B. Evaluating the placement strategy

To assess the effect of the reconstruction of monitoring data
on the overall service orchestration performance, we need to
define criteria for the evaluation, as well as reference baselines.
We define as “optimal service placement decision” the one
taken by the SO layer when it is provided with the complete,
uncorrupted set of monitoring data, arguing that the service
placement processes are reasonably expected to perform best
in that case. Additionally, we define the Service Allocation
Failure Probability (SAFP) as

SAFP =
NB +NM

NT
, (2)
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Fig. 2. Mean absolute percentage error of CRISP compared to CNN-based
spatial reconstruction for different node counts.
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Fig. 3. Mean squared error of CRISP compared to CNN-based spatial
reconstruction for different node counts.

where NB is the number of blocked service requests (i.e.,
requests that the orchestrator decided to block due to perceived
unavailability of resources), NM is the number of mismanaged
service requests (i.e., requests that the orchestator accepted,
but ended up being served by nodes that were not actually
available), and NT is the total number of service requests
offered to the system.

Lastly, we define two baseline strategies concerning the
usage of monitoring data by the placement processes, namely
Empty and Past. With the former, all resource nodes for which
incomplete monitoring information is available are considered
inactive (computationally “empty”), and can therefore be allo-
cated computing tasks for a service. With the latter, vacancies
in the monitoring data are filled with the most recent reliable
information on that specific resource. The Empty strategy may
seem imprudent, as intuitively it would make more sense to
refrain from mapping services onto resources without any valid
monitoring information. However, we have included it as it
reduces the probability of blocking a request, at the cost of
increasing the occurrences of sub-optimal deployments.

We expect the results to be influenced by multiple factors,
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Fig. 4. Performance of the service placement algorithm in taking optimal
decisions (expressed as a percentage of sub-optimal decisions) for different
node amounts.

including the overall amount of available resources, the distri-
bution of service requests, the amount and characteristics of
possible services, and the probability of monitoring informa-
tion being lost. Regarding the former three factors, we apply
the same rationale as in [16]. We consider a total of 10, 20,
50 available resources (e.g., edge nodes), and offer service
requests to the orchestration system with a traffic intensity
of 100 Erlang. We define four different services, each with its
own profile in terms of required computational effort, in terms
of CPU, RAM, disk, and bandwidth, and assume them to be
uniformly distributed in [0.15, 0.3], [0.1, 0.2], [0.01, 0.1], and
[0.01, 0.02] for the different services. It is worth noting that,
as demonstrated in [16], the placement performance would be
remarkably good also for a much larger number of resources
than the one used for training. Regarding the probability of
losing monitoring data, we assume that each resource (e.g.,
edge node) provides monitoring information in the form of
a single packet enclosing all the metric values for a given
time instant. Furthermore, we assume that any such packet is
either correctly gathered by the collector processes in the RO
layer, or lost entirely. This implies, in turn, that each resource
is either associated with a complete set of monitoring data,
or no data is available for that resource at all, for any given
time instant. We implemented this by randomly selecting one
node from the pool of available resources, on average every
three time-steps, and completely masking the monitoring data
associated with it for that time step.

We perform the evaluations in the same simulated envi-
ronment used in [16], running each scenario 100 times, and
providing 10000 requests to the orchestrator in each run.

In Fig. 4, we can observe that the placement algorithm
always achieves better results when operating with recon-
structed data, obtaining a tangible improvement (of 59.6%)
when compared to the Empty strategy, and a smaller but still
meaningful improvement (of 5.7%) when compared to the
Past strategy. Furthermore, with this approach, the orchestrator
does not need to host and maintain a registry with monitoring
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Fig. 5. Evolution of SAFP over simulated time.

information related to past time instants. This is particularly
relevant in situations where the number of available resources
to be orchestrated grows to the amounts typical of massive
Edge Computing or Internet of Things scenarios.

Moreover, Fig. 5 shows that CRISP outperforms the baseline
strategies also in terms of SAFP. With the Past strategy, the
orchestrator is not aware of departures that have taken place
since the last service allocation (i.e., the last moment when
monitoring data was collected), so it might deduce that the
nodes are more occupied than they actually are, leading to
a higher chance of blocking the service request. The Empty
strategy makes the orchestrator perceive nodes for which
it does not have monitoring information as not occupied,
encouraging it to allocate services on those nodes. On its
own, this would result in a lower occurrence of blocking,
but it also implies that the services are not guaranteed to
be executed correctly, as the selected node might, in fact, be
occupied, resulting in the impossibility of actually instantiating
the service.

V. CONCLUSION & FUTURE WORK

This paper presents CRISP, a solution to recover missing
monitoring data for service orchestration algorithms. Our
results show that our CNN-LSTM model accurately recon-
structs this information, enhancing the efficacy of placement
algorithms. By integrating data reconstruction techniques, or-
chestration systems can make informed placement decisions,
optimizing resource utilization and system performance, espe-
cially in dynamic environments (e.g., Edge Computing).

Future research will investigate how recent learning-based
orchestrators can benefit from this approach, focusing on the
synergy between monitoring and application services, and
evaluating the efficacy of CRISP in additional, challenging
scenarios.

While obtaining real-world data is challenging, the de-
ployment of testbeds in controlled environments is an ongo-
ing effort, as it can facilitate the capture of more realistic



traffic patterns. By incorporating diverse and dynamic traffic
scenarios, we can better assess the effectiveness of CRISP
in practical settings and ensure its relevance to real-world
deployment challenges.

Exploring alternative strategies beyond Load Balancing
(LB) is essential to broadening the appropriateness of CRISP.
While our paper primarily focuses on LB as a use case, we
plan to investigate the applicability of CRISP to a broader
range of orchestration strategies, such as QoS greedy schedul-
ing or revenue-oriented service placement algorithms. Evaluat-
ing CRISP’s efficacy across multiple orchestration paradigms
will provide valuable insights into its versatility and suitability
for different deployment scenarios.

In conclusion, future research aims to enhance traffic model
realism, assess scalability and practical challenges through
real-world deployments, and explore alternative orchestration
strategies to broaden CRISP’s applicability in dynamic envi-
ronments like edge computing.
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