The electric vehicle is becoming increasingly prevalent as a viable option to replace hydrocarbon fuelled vehicles, and as such the development of high efficiency fully electric drivetrains is a particularly relevant research topic. The drivetrain topology is one of the main focuses of research on fully electric drivetrains, because of the variety of available options. For example, the adoption of multiple-speed mechanical transmissions can improve both the performance and energy consumption when compared to a single-speed transmission. A four-speed, dual motor drivetrain design is presented in this article which works on the principle of two double-speed transmissions, each driven by a separate motor linked through a sole secondary shaft. This drivetrain architecture provides increased flexibility of the electric motor operating points, theoretically being beneficial to the overall efficiency of the system for any driving condition. This paper presents the design of the transmission, its governing equations and the method adopted to optimize the state selection map and electric motor torque distribution. A backward-facing energy consumption model is used to compare the results of the four-speed transmission with those of single- and double-speed transmissions for four case study vehicles.

Energy consumption analysis of a novel four-speed dual motor drivetrain for electric vehicles / Holdstock, T.; Sorniotti, A.; Everitt, M.; Fracchia, M.; Bologna, S.; Bertolotto, S.. - (2012), pp. 295-300. (Intervento presentato al convegno 2012 IEEE Vehicle Power and Propulsion Conference, VPPC 2012 tenutosi a Seoul, kor nel 2012) [10.1109/VPPC.2012.6422721].

Energy consumption analysis of a novel four-speed dual motor drivetrain for electric vehicles

Sorniotti A.;
2012

Abstract

The electric vehicle is becoming increasingly prevalent as a viable option to replace hydrocarbon fuelled vehicles, and as such the development of high efficiency fully electric drivetrains is a particularly relevant research topic. The drivetrain topology is one of the main focuses of research on fully electric drivetrains, because of the variety of available options. For example, the adoption of multiple-speed mechanical transmissions can improve both the performance and energy consumption when compared to a single-speed transmission. A four-speed, dual motor drivetrain design is presented in this article which works on the principle of two double-speed transmissions, each driven by a separate motor linked through a sole secondary shaft. This drivetrain architecture provides increased flexibility of the electric motor operating points, theoretically being beneficial to the overall efficiency of the system for any driving condition. This paper presents the design of the transmission, its governing equations and the method adopted to optimize the state selection map and electric motor torque distribution. A backward-facing energy consumption model is used to compare the results of the four-speed transmission with those of single- and double-speed transmissions for four case study vehicles.
2012
978-1-4673-0954-7
978-1-4673-0953-0
978-1-4673-0952-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2990766
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo