With technological innovation and advancements, especially in autonomy, battery and digitization, the future of air transport and mobility is transiting towards a broader spectrum of Advanced Air Mobility (AAM) and Urban Air Mobility (UAM). UAM envisions safer, faster, and more sustainable air mobility for smarter cities and urban environments including passenger transport and goods delivery. Nevertheless, this concept is still considered extremely breakthrough and several technological and operational aspects are mostly undefined. In this context, a comprehensive approach to AAM/UAM may be to adapt cutting-edge technologies in developing sustainable framework and Human-Machine Interfaces (HMIs) in order to realize the challenges, benefits, and conditions of such transport system in advance for future safer, more reliable and globally approved operations. One of the technologies that can contribute to accelerate advancements through human centred simulating UAM processes and operations is XR (eXtended Reality). This paper presents the early steps of a multidisciplinary study performed under the framework of PNRR (Piano Nazionale di Ripresa e Resilienza) and MOST (Centro Nazionale Mobilità Sostenibile) project in analyzing the perspectives of XR based HMIs for UAM paradigm and potential AAM/UAM use case scenarios that can be simulated with XR in view of attaining efficient and effective future solutions. Furthermore, the work introduces the state-of-the-art overview on XR facilitated UAM applications and considers prospective potential use cases that can be developed through PNRR research study in demonstrating XR as an enabling technology in promising areas of the UAM framework.

Insights on state of the art and perspectives of XR for human machine interfaces in advanced air mobility and urban air mobility / Santhosh, Sandhya; De Crescenzio, Francesca; Araujo Millene, Gomes; Corsi, Marzia; Bagassi, Sara; Lamberti, Fabrizio; Prattico', FILIPPO GABRIELE; Accardo, Domenico; Conte, Claudia; De Nola, Francesco; Bazzani, Marco; Losi Joyce, Adriano. - 37:(2023), pp. 426-430. (Intervento presentato al convegno 27th Congress of the Italian Association of Aeronautics and Astronautics, AIDAA 2023 tenutosi a Padova (Italy) nel 2023) [10.21741/9781644902813-94].

Insights on state of the art and perspectives of XR for human machine interfaces in advanced air mobility and urban air mobility

Lamberti Fabrizio;Pratticò Filippo Gabriele;
2023

Abstract

With technological innovation and advancements, especially in autonomy, battery and digitization, the future of air transport and mobility is transiting towards a broader spectrum of Advanced Air Mobility (AAM) and Urban Air Mobility (UAM). UAM envisions safer, faster, and more sustainable air mobility for smarter cities and urban environments including passenger transport and goods delivery. Nevertheless, this concept is still considered extremely breakthrough and several technological and operational aspects are mostly undefined. In this context, a comprehensive approach to AAM/UAM may be to adapt cutting-edge technologies in developing sustainable framework and Human-Machine Interfaces (HMIs) in order to realize the challenges, benefits, and conditions of such transport system in advance for future safer, more reliable and globally approved operations. One of the technologies that can contribute to accelerate advancements through human centred simulating UAM processes and operations is XR (eXtended Reality). This paper presents the early steps of a multidisciplinary study performed under the framework of PNRR (Piano Nazionale di Ripresa e Resilienza) and MOST (Centro Nazionale Mobilità Sostenibile) project in analyzing the perspectives of XR based HMIs for UAM paradigm and potential AAM/UAM use case scenarios that can be simulated with XR in view of attaining efficient and effective future solutions. Furthermore, the work introduces the state-of-the-art overview on XR facilitated UAM applications and considers prospective potential use cases that can be developed through PNRR research study in demonstrating XR as an enabling technology in promising areas of the UAM framework.
2023
File in questo prodotto:
File Dimensione Formato  
aidaa_2023_1.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989683