Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized model predictive control (MPC) approach that incorporates Kalman filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB/Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a reinforcement learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability.

Decentralized Control for CACC Systems Accounting for Uncertainties / Seifoddini, A.; Azad, A.; Musa, A.; Misul, D.. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - ELETTRONICO. - 1:(2024). (Intervento presentato al convegno CO2 Reduction for Transportation Systems Conference tenutosi a Torino, Italy nel June 12-13) [10.4271/2024-37-0010].

Decentralized Control for CACC Systems Accounting for Uncertainties

Musa A.;Misul D.
2024

Abstract

Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized model predictive control (MPC) approach that incorporates Kalman filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB/Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a reinforcement learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability.
2024
File in questo prodotto:
File Dimensione Formato  
2024-37-0010.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 815.33 kB
Formato Adobe PDF
815.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2989522