The opaque reasoning of Graph Neural Networks induces a lack of human trust. Existing graph network explainers attempt to address this issue by providing post-hoc explanations, however, they fail to make the model itself more interpretable. To fill this gap, we introduce the Concept Distillation Module, the first differentiable concept-distillation approach for graph networks. The proposed approach is a layer that can be plugged into any graph network to make it explainable by design, by first distilling graph concepts from the latent space and then using these to solve the task. Our results demonstrate that this approach allows graph networks to: (i) attain model accuracy comparable with their equivalent vanilla versions, (ii) distill meaningful concepts achieving 4.8% higher concept completeness and 36.5% lower purity scores on average, (iii) provide high-quality concept-based logic explanations for their prediction, and (iv) support effective interventions at test time: these can increase human trust as well as improve model performance.
Concept Distillation in Graph Neural Networks / Magister, L. C.; Barbiero, P.; Kazhdan, D.; Siciliano, F.; Ciravegna, G.; Silvestri, F.; Jamnik, M.; Lio, P.. - 1903:(2023), pp. 233-255. (Intervento presentato al convegno 1st World Conference on eXplainable Artificial Intelligence, xAI 2023 tenutosi a Lisbon (PRT) nel July 26–28, 2023) [10.1007/978-3-031-44070-0_12].
Concept Distillation in Graph Neural Networks
Ciravegna G.;
2023
Abstract
The opaque reasoning of Graph Neural Networks induces a lack of human trust. Existing graph network explainers attempt to address this issue by providing post-hoc explanations, however, they fail to make the model itself more interpretable. To fill this gap, we introduce the Concept Distillation Module, the first differentiable concept-distillation approach for graph networks. The proposed approach is a layer that can be plugged into any graph network to make it explainable by design, by first distilling graph concepts from the latent space and then using these to solve the task. Our results demonstrate that this approach allows graph networks to: (i) attain model accuracy comparable with their equivalent vanilla versions, (ii) distill meaningful concepts achieving 4.8% higher concept completeness and 36.5% lower purity scores on average, (iii) provide high-quality concept-based logic explanations for their prediction, and (iv) support effective interventions at test time: these can increase human trust as well as improve model performance.File | Dimensione | Formato | |
---|---|---|---|
978-3-031-44070-0_12.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2988537