We introduce, in this paper, an analysis of the dynamics of the Swinging Omnidirectional (SWINGO) wave energy converter. Such a device is an inertial reacting Wave Energy Converter (WEC), that exploits the dynamics of a gyropendulum mechanism which, being excited by the wave-induced whirling motion (i.e. coupling between pitch and roll on a floater), can successively activate an electric generator connected to the grid. In particular, we apply the harmonic balance method, tuned to the system fundamental harmonic, to identify the effect of nonlinearities on the SWINGO dynamics and their impact on energy production. Furthermore, we present the so-called van der Pol plane to assess the stability properties of the system. The SWINGO model is derived via a Lagrangian approach formulated with respect to quasi-coordinates. We demonstrate that multi-stability behaviour can be found for this nonlinear system, completely absent in its associated linearisation. Finally, we synthesise so-called 'passive' (i.e. proportional) energy-maximising controllers by leveraging the Harmonic Balance (HB) procedure, providing control parameters which are effectively tuned by exploiting the presented nonlinear description of SWINGO. Copyright (c) 2023 The Authors.

Nonlinear dynamic analysis and control synthesis for the Swinging Omnidirectional (SWINGO) Wave Energy Converter / Carapellese, Fabio; Paduano, Bruno; Pasta, Edoardo; Papini, Guglielmo; Faedo, Nicolas; Mattiazzo, Giuliana. - 56:(2023), pp. 11723-11728. (Intervento presentato al convegno 22nd World Congress of the International Federation of Automatic Control tenutosi a Yokohama, Japan) [10.1016/j.ifacol.2023.10.540].

Nonlinear dynamic analysis and control synthesis for the Swinging Omnidirectional (SWINGO) Wave Energy Converter

Carapellese, Fabio;Paduano, Bruno;Pasta, Edoardo;Papini, Guglielmo;Faedo, Nicolas;Mattiazzo, Giuliana
2023

Abstract

We introduce, in this paper, an analysis of the dynamics of the Swinging Omnidirectional (SWINGO) wave energy converter. Such a device is an inertial reacting Wave Energy Converter (WEC), that exploits the dynamics of a gyropendulum mechanism which, being excited by the wave-induced whirling motion (i.e. coupling between pitch and roll on a floater), can successively activate an electric generator connected to the grid. In particular, we apply the harmonic balance method, tuned to the system fundamental harmonic, to identify the effect of nonlinearities on the SWINGO dynamics and their impact on energy production. Furthermore, we present the so-called van der Pol plane to assess the stability properties of the system. The SWINGO model is derived via a Lagrangian approach formulated with respect to quasi-coordinates. We demonstrate that multi-stability behaviour can be found for this nonlinear system, completely absent in its associated linearisation. Finally, we synthesise so-called 'passive' (i.e. proportional) energy-maximising controllers by leveraging the Harmonic Balance (HB) procedure, providing control parameters which are effectively tuned by exploiting the presented nonlinear description of SWINGO. Copyright (c) 2023 The Authors.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo