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Nonlinear dynamic analysis and control
synthesis for the Swinging Omnidirectional

(SWINGO) Wave Energy Converter.
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Marine Offshore Renewable Energy Lab., Department of Mechanical
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Abstract: We introduce, in this paper, an analysis of the dynamics of the Swinging Om-
nidirectional (SWINGO) wave energy converter. Such a device is an inertial reacting Wave
Energy Converter (WEC), that exploits the dynamics of a gyropendulum mechanism which,
being excited by the wave-induced whirling motion (i.e. coupling between pitch and roll on a
floater), can successively activate an electric generator connected to the grid. In particular, we
apply the harmonic balance method, tuned to the system fundamental harmonic, to identify
the effect of nonlinearities on the SWINGO dynamics and their impact on energy production.
Furthermore, we present the so-called van der Pol plane to assess the stability properties of the
system. The SWINGO model is derived via a Lagrangian approach formulated with respect to
quasi-coordinates. We demonstrate that multi-stability behaviour can be found for this nonlinear
system, completely absent in its associated linearisation. Finally, we synthesise so-called ‘passive’
(i.e. proportional) energy-maximising controllers by leveraging the Harmonic Balance (HB)
procedure, providing control parameters which are effectively tuned by exploiting the presented
nonlinear description of SWINGO.

Keywords: Wave energy converters, Nonlinear Modelling, Harmonic Balance

1. INTRODUCTION

Ocean wave energy is an untapped resource, with 10
TW of energy available worldwide (Gunn and Stock-
Williams, 2012). Nevertheless, extraction of the wave re-
source presents problems in terms of maintenance, cost of
energy, and technology limitations due to the wide-banded
nature of ocean waves.

Most of the devices introduced in the literature are anal-
ysed in the linear domain, often driven by the motivation
of keeping models simple for optimization and real-time
control purposes. In fact, the design of wave energy con-
verters (WECs) involves an optimization process which
aims at lowering the associated cost of energy and max-
imising the amount of energy produced. The latter can
be further optimised through the application of suitable
control technology capable of ‘expanding’ the operating
frequency range of WEC systems, which naturally have a
narrow operating frequency band.

Although the use of linear models can be seen as a valid
procedure within a first design stage, it may become an
imprecise approximation for a full scale device implemen-
tation, since we recall that, in the wave energy research
field, the infinitesimal motion assumptions, used to com-
pute the system linearised model, are violated by the con-
troller itself, which often moves the system away from its
equilibrium position, to enhance the motion and effectively
maximise energy extraction (Windt et al., 2021).

1 Corresponding author - e-mail: fabio.carapellese@polito.it.

Generally, offshore WEC systems, which aim to harvest
wave energy from a rotational degree-of-freedom (DoF),
make use of a floater as an intermediate system to transmit
the wave motion to an encapsulated inertial mass, e.g.
pendulum (see (Gioia et al., 2022)), gyroscope (see (Cara-
pellese et al., 2022a)), or sliding mass rigidly connected
to an electric generator. Recently, we have introduced a
newly-developed concept called Swinging Omni-directional
(SWINGO) WEC in (Carapellese et al., 2023), designed
for being a multidirectional device. On the basis of a
more realistic wave representation, which includes the so-
called spreading phenomenon, SWINGO is parametrically
excited by pitch and roll motion of the floater, having
a rich dynamical behaviour. Such nonlinear effects are
not captured by a linearised model, providing inconsistent
controller parametrisations.

We provide, in this paper, a detailed dynamical analysis
for the SWINGO system, including the derivation of the
optimal passive control parameters considering a compre-
hensive nonlinear description. In particular, we compute
the nonlinear equations characterising the WEC system by
using a Lagrangian approach defined for quasi-coordinates,
and adopt a harmonic balance (HB) method to analyse the
resulting nonlinear behaviour. In particular, we produce
both the so-called amplitude-frequency curves (AFC), and
the multi-stability curve for the corresponding SWINGO
dynamics. We demonstrate that the SWINGO system
can present dynamic behaviour totally neglected by its
corresponding linearisation, including e.g. multi-stability.
Therefore, based on the analysis of the system response
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equilibrium position, to enhance the motion and effectively
maximise energy extraction (Windt et al., 2021).
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Generally, offshore WEC systems, which aim to harvest
wave energy from a rotational degree-of-freedom (DoF),
make use of a floater as an intermediate system to transmit
the wave motion to an encapsulated inertial mass, e.g.
pendulum (see (Gioia et al., 2022)), gyroscope (see (Cara-
pellese et al., 2022a)), or sliding mass rigidly connected
to an electric generator. Recently, we have introduced a
newly-developed concept called Swinging Omni-directional
(SWINGO) WEC in (Carapellese et al., 2023), designed
for being a multidirectional device. On the basis of a
more realistic wave representation, which includes the so-
called spreading phenomenon, SWINGO is parametrically
excited by pitch and roll motion of the floater, having
a rich dynamical behaviour. Such nonlinear effects are
not captured by a linearised model, providing inconsistent
controller parametrisations.

We provide, in this paper, a detailed dynamical analysis
for the SWINGO system, including the derivation of the
optimal passive control parameters considering a compre-
hensive nonlinear description. In particular, we compute
the nonlinear equations characterising the WEC system by
using a Lagrangian approach defined for quasi-coordinates,
and adopt a harmonic balance (HB) method to analyse the
resulting nonlinear behaviour. In particular, we produce
both the so-called amplitude-frequency curves (AFC), and
the multi-stability curve for the corresponding SWINGO
dynamics. We demonstrate that the SWINGO system
can present dynamic behaviour totally neglected by its
corresponding linearisation, including e.g. multi-stability.
Therefore, based on the analysis of the system response
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1. INTRODUCTION

Ocean wave energy is an untapped resource, with 10
TW of energy available worldwide (Gunn and Stock-
Williams, 2012). Nevertheless, extraction of the wave re-
source presents problems in terms of maintenance, cost of
energy, and technology limitations due to the wide-banded
nature of ocean waves.

Most of the devices introduced in the literature are anal-
ysed in the linear domain, often driven by the motivation
of keeping models simple for optimization and real-time
control purposes. In fact, the design of wave energy con-
verters (WECs) involves an optimization process which
aims at lowering the associated cost of energy and max-
imising the amount of energy produced. The latter can
be further optimised through the application of suitable
control technology capable of ‘expanding’ the operating
frequency range of WEC systems, which naturally have a
narrow operating frequency band.

Although the use of linear models can be seen as a valid
procedure within a first design stage, it may become an
imprecise approximation for a full scale device implemen-
tation, since we recall that, in the wave energy research
field, the infinitesimal motion assumptions, used to com-
pute the system linearised model, are violated by the con-
troller itself, which often moves the system away from its
equilibrium position, to enhance the motion and effectively
maximise energy extraction (Windt et al., 2021).
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Generally, offshore WEC systems, which aim to harvest
wave energy from a rotational degree-of-freedom (DoF),
make use of a floater as an intermediate system to transmit
the wave motion to an encapsulated inertial mass, e.g.
pendulum (see (Gioia et al., 2022)), gyroscope (see (Cara-
pellese et al., 2022a)), or sliding mass rigidly connected
to an electric generator. Recently, we have introduced a
newly-developed concept called Swinging Omni-directional
(SWINGO) WEC in (Carapellese et al., 2023), designed
for being a multidirectional device. On the basis of a
more realistic wave representation, which includes the so-
called spreading phenomenon, SWINGO is parametrically
excited by pitch and roll motion of the floater, having
a rich dynamical behaviour. Such nonlinear effects are
not captured by a linearised model, providing inconsistent
controller parametrisations.

We provide, in this paper, a detailed dynamical analysis
for the SWINGO system, including the derivation of the
optimal passive control parameters considering a compre-
hensive nonlinear description. In particular, we compute
the nonlinear equations characterising the WEC system by
using a Lagrangian approach defined for quasi-coordinates,
and adopt a harmonic balance (HB) method to analyse the
resulting nonlinear behaviour. In particular, we produce
both the so-called amplitude-frequency curves (AFC), and
the multi-stability curve for the corresponding SWINGO
dynamics. We demonstrate that the SWINGO system
can present dynamic behaviour totally neglected by its
corresponding linearisation, including e.g. multi-stability.
Therefore, based on the analysis of the system response
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the equation of motion defined in quasi-coordinates with
respect to R(Gξηζ) is stated as follows:
Iξ 0 0
0 Iη 0
0 0 Iζ


ω̇ξ

ω̇η

ω̇ζ


+


0 Iζωζ + Jφ̇ −Iηωη

Iζωζ − Jφ̇ 0 Iξωξ

Iηωη −Iξωξ 0


ωξ

ωη

ωζ


+

+


0 0 0
0 1 0
0 0 1


J−T




∂U
∂θ
∂U
∂δ
∂U
∂ψ





+




∂U
∂ε
0
0


 = Tgp,

(5)

where the corresponding inertia matrix of the gimbal, and
flywheel system with respect to their CoG, {Is, If} ⊂
R3×3, are, respectively,

Is = diag(Is,x, Is,y, Is,z), If = diag(If,x, If,y, If,z). (6)

We define the inertial element introduced in (5) as follows,

Iξ = Is,x + If,x +mf l
2
f ,

Iη = Is,y + If,y +mf l
2
f ,

Iζ = Is,z + If,z.

(7)

We recall that Tξ is null when the device is in non-
operating conditions, and equal to TPTO when effectively
in energy extraction mode. In particular, we define the
PTO (control) torque in terms of the following (passive)
parametric expression:

TPTO = −cPTOε̇, (8)

where cPTO ∈ R+ is the (PTO) control parameter, ad-
justed to maximise energy conversion according to the fre-
quency of the wave excitation force. As a further step, we
transpose the derived reaction forces to the floater frame
R(O′xyz), and we introduce the vector Tf = [Tx Ty Tz]

T,
derived as

Tf = R(ε, ξ̂)Tgp. (9)
With the definitions provided up until this point, the
nonlinear equation, which fully describes the mechanical
interaction between the gyropendulum and the floater
expressed in generalised coordinates, can be written as
follows 2
Iξ 0 Iξ
0 Iy,i 0
Iξ 0 Iξ



θ̈

δ̈
ε̈


 =


Tx

Ty

Tξ + TPTO


+




0

2Iy,i(sεcθ + cεsθ)δ̇ε̇
0




(10)
where Tx = Tξ and the inertia terms Iy,i in (10) computed
from the following equation

Ix,i 0 0
0 Iy,i 0
0 0 Iz,i


= R(ε, ξ̂)


Iξ 0 0
0 Iη 0
0 0 Iζ


R(ε, ξ̂)TD. (11)

2.3 Hydrodynamic model

With the assumption that the fluid is inviscid and incom-
pressible, and the fluid flow is irrotational, the so-called
linear potential flow theory (Falnes, 2002) provides an
approximation of the fluid-structure interaction through
a time-domain system of Volterra equations, written as

Σ :

Ihγ̈ = Tw + Th + Tr + Treac, (12)

where Ih ∈ R2×2 is the diagonal inertia matrix of the
SWINGO device, and Treac = [Tx, Ty]

T is the vector of re-
action forces defined in the Section 2.2. Tw = [Twθ

, Twδ
]T :

2 The notation cα and sα, with α ∈ R, stands for cosα and sinα,
respectively.

R+ → R2 defines the (uncontrollable) wave excitation
torque, Tr : R+ → R2 is the so-called radiation torque
vector, and Th : R+ → R2 describes the hydrostatic
restoring torque acting on the floater. Such a force is
defined proportional to the device (pitch) motion, and
can be hence written as Th = [Thθ

, Thδ
]T = −Shγ, where

Sh ∈ R2×2 is the so-called hydrostatic stiffness coefficient.
Note that, in this study, we are considering an incident
angle α = 45o, and then the wave excitation forces on
roll and pitch axes with respect to R(O′xyz) have the
same amplitude, given the floater symmetry. Moreover, the
radiation force is modelled using the well-known Cummins’
equation, i.e.

Tr(t) =


Trθ (t)
Trδ(t)


= −


m∞γ̈(t) +



R+

hr(t− τ)γ̇(τ)dτ


,

(13)
where the first term in the summation, proportional to
the device acceleration in pitch, corresponds to an inertial
increase due to the water displaced when the body moves,
while the second term corresponds with the dissipative
force, proportional to the body velocity. In particular,
the matrix m∞ ∈ R2×2 represents the so-called added-
mass at infinite frequency, given by the relation m∞ =
limω→+∞ Ar(ω), where Ar(ω) is the so-called frequency-
dependent added-mass coefficient (see (Falnes, 2002)).

2.4 Coupled mechanical-hydrodynamic model

Within this section, we provide the coupled mechanical-
hydrodynamic model σ, by considering the inherent me-
chanical coupling between the gyropendulum mechanism
and the floater, and the hydrodynamic (pitch and roll)
motion of the device activated by the wave input torque.
Therefore, by defining the hydrostatic stiffness matrix Sh

and added mass m∞ as follows

Ih =


Ihθ

0
0 Ihδ


, Sh =


Shθ

0
0 Shδ


,m∞ =


m∞

θ 0
0 m∞

δ


,

(14)
the nonlinear model σ of the SWINGO device can be
expressed, in compact form, as


Ihθ

+ Iξ +m∞
θ 0 Iξ

0 Ihδ
+ Iy,i +m∞

δ 0
Iξ 0 Iξ



θ̈

δ̈
ε̈




=


Twθ

+ Thθ
+ Trθ + Tx

Twδ
+ Thδ

+ Trδ + Ty

Tξ + TPTO


.

(15)

For the sake of completeness, we provide a derivation of the
Jacobian linearisation of equation (15) for the SWINGO
device as a ‘reference’ (i.e. benchmark) case model for the
analysis performed in Section 3. The linearisation proce-
dure is performed under the assumption of infinitesimally
small rotation about the equilibrium position (θ, δ, ε) =
(0,0,0), hence the associated linearised system σl is:


Ihθ

+ Iξ +m∞
θ 0 Iξ

0 Ihδ
+ Iη +m∞

δ 0
Iξ 0 Iξ



θ̈

δ̈
ε̈




=



Twθ

+ Thθ
+ Trθ − Jφδ̇ −mf lfg(θ + ε)

Twδ
+ Thδ

+ Trδ + Jφ(θ̇ + ε̇)−mf lfgδ

TPTO − Jφδ̇ −mf lfg(θ + ε)


 .

(16)

through the van der Pol plane, the stability of each solution
is analysed, to avoid driving the system through an unsta-
ble oscillation (especially under controlled conditions).

The reminder of this paper is organised as follows. Sec-
tion 2 presents a derivation of the nonlinear SWINGO
model, including a brief theoretical background on the HB
procedure. Section 3 provides a control synthesis based
upon HB to define the optimal passive control parame-
ter for the nonlinear system, while Section 4 presents a
dynamical analysis of the SWINGO system, with a partic-
ular focus on the system stability properties arising from
different control settings. Finally, the main conclusions of
this study are highlighted in Section 5.

2. SWINGO MODEL

The SWINGO device is composed of an innovative gy-
ropendulum mechanism, mounted inside a floating hull,
as in Figure 1. The gyropendulum mechanism is intro-
duced in Meirovitch (1970), and adapted for wave energy
applications in e.g. (Carapellese et al., 2023). It is a gyro-
scopic system, in which the flywheel mass mf is essentially
mounted at a distance lf from the precession axis, as
shown in Figure 1. The floater pitch motion ‘activates’
the mechanical system, which hence oscillates, according
to an angle ε : t → ε(t), due to the forces of the incoming
wave field. Note that, it is well-known (see e.g. (Meirovitch,
1970)) that a gyroscopic system is parametrically excited
if it is induced to rotate in the plane parallel to the
floater deck. Such gyroscopic motion is then converted into
electrical energy by means of a dedicated power take-off
(PTO) actuator system.

For the subsequent analysis, we focus on the system
response defined in terms of the vector γ(t) = [θ(t) δ(t)],
where θ : t → θ(t) ∈ R and δ : t → δ(t) ∈ R denote the
floater roll and pitch rotation, respectively. We focus on
an ‘intermediate’ condition to study the device property
in hybrid mode, i.e. when the roll and pitch are considered.

Fig. 1. Schematic representation of the SWINGO device.

2.1 Reference frame and kinematics definition

We derive, in this section, the fundamental nonlin-
ear mathematical model describing the dynamics of the
SWINGO device. Relative motion between bodies is in-
volved during operating conditions, and hence we intro-
duce hereafter a suitable set of reference frames:

• R(OXY Z) is the inertial reference frame,
• R(O′xyz) is the hull fixed reference frame, with the

x-axis parallel to the ξ-axis and origin O′ placed in
the WEC center of gravity (CoG),

• R(GΞHZ) is the hull-fixed reference frame with the
origin G on the gyropendulum precession axis, and

• R(Gξηζ) is the gimbal-fixed reference frame.

With the definition of the system reference frames above,
we derive the full nonlinear equation of motion of the
mechanism in terms of quasi-coordinates (see e.g. (Genta,
2009)), to transpose the floater-referred generalised co-
ordinates γ on the gyropendulum-fixed reference frame,
i.e. R(Gξηζ). We state the vector of quasi-coodinates
Ωf : t → Ωf (t) ∈ R3, with Ωf (t) = [ωξ(t)ωη(t)ωζ(t)]

T

defined in R(Gξηζ) as follows,
Ωf = R(ε, ξ̂)TDΦ̇ = JΦ̇, (1)

where R(ε, ξ̂) denotes the rotation matrix of angle ε, with

respect to a unit vector ξ̂ defined on the ξ-axis, and D is
the inverse of the analytical Jacobian matrix as defined
in (Siciliano et al., 2009). Moreover,Φ̇(t) = [γ̇(t) ψ̇(t)]T,
where ψ is the floater yaw rotation, which is considered
to be zero within this study. Therefore, the total velocity
Ωg : t → Ωg(t) ∈ R3, with Ωg(t) = [Ωξ(t) Ωη(t) Ωζ(t)]

T

links the mapped floater velocity on R(Gξηζ), and the
proper velocity of the gyropendulum ε̇ is defined as,

Ωg =
[
R(ε, ξ̂)TD Ĩ

] [Φ̇
ε̇

]
, (2)

where Ĩ = [1 0 0]T. Finally, we define the total flywheel
velocity [Ωξ′ Ωη′ Ωζ′ ]T as follows

Ωξ′ = Ωξ, Ωη′ = Ωη, Ωζ′ = Ωζ + φ̇, (3)

where φ̇ is the proper flywheel speed, considered constant
during operating conditions, and set according to the wave
direction. Note that, when φ̇ is null, the gyropendulum
behaves as a pendulum, which is the optimal condition
when the wave direction is parallel to the y-axis. In
contrast, when the waves move parallel to the x-axis, φ̇ is
set to a value different from zero, to activate the gyroscopic
effect and exploit the coupling between the flywheel speed
φ̇, and the floater angular velocity with respect to the y-
axis, i.e. δ̇.

2.2 Lagrange approach for quasi-coordinates

With the kinematics description of the gyropendulum
system, presented in (1)-(2), we derive the vector of
forces Tgp(t) = [Tξ(t) Tη(t) Tζ(t)]

T ∈ R3 acting on the
gyropendulum, transmitted to the floater through the set
of radial bearings that constraint the gyropendulum to the
system. The equation of motion for the SWINGO system,
by means of the Lagrange equations in terms of Ωg, can
be expressed as follows

d

dt

(
∂T
∂Ωg

)
+ ω̃

∂T
∂Ωg

+ J−T ∂U
∂Φ

= Tgp (4)

where T (Ωg) ∈ R and U(Φ) ∈ R are the system kinetic and
potential energy, respectively, and ω̃ is the skew-symmetric
matrix associated to Ωg. Note that, the equation presented
in (4) does not introduce the term related to the linear
velocity of the floater, resulting in a modified version of
the equation introduced in (Meirovitch, 1970). Finally,
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the equation of motion defined in quasi-coordinates with
respect to R(Gξηζ) is stated as follows:
Iξ 0 0
0 Iη 0
0 0 Iζ


ω̇ξ

ω̇η

ω̇ζ


+


0 Iζωζ + Jφ̇ −Iηωη

Iζωζ − Jφ̇ 0 Iξωξ

Iηωη −Iξωξ 0


ωξ

ωη

ωζ


+

+


0 0 0
0 1 0
0 0 1


J−T




∂U
∂θ
∂U
∂δ
∂U
∂ψ





+




∂U
∂ε
0
0


 = Tgp,

(5)

where the corresponding inertia matrix of the gimbal, and
flywheel system with respect to their CoG, {Is, If} ⊂
R3×3, are, respectively,

Is = diag(Is,x, Is,y, Is,z), If = diag(If,x, If,y, If,z). (6)

We define the inertial element introduced in (5) as follows,

Iξ = Is,x + If,x +mf l
2
f ,

Iη = Is,y + If,y +mf l
2
f ,

Iζ = Is,z + If,z.

(7)

We recall that Tξ is null when the device is in non-
operating conditions, and equal to TPTO when effectively
in energy extraction mode. In particular, we define the
PTO (control) torque in terms of the following (passive)
parametric expression:

TPTO = −cPTOε̇, (8)

where cPTO ∈ R+ is the (PTO) control parameter, ad-
justed to maximise energy conversion according to the fre-
quency of the wave excitation force. As a further step, we
transpose the derived reaction forces to the floater frame
R(O′xyz), and we introduce the vector Tf = [Tx Ty Tz]

T,
derived as

Tf = R(ε, ξ̂)Tgp. (9)
With the definitions provided up until this point, the
nonlinear equation, which fully describes the mechanical
interaction between the gyropendulum and the floater
expressed in generalised coordinates, can be written as
follows 2
Iξ 0 Iξ
0 Iy,i 0
Iξ 0 Iξ



θ̈

δ̈
ε̈


 =


Tx

Ty

Tξ + TPTO


+




0

2Iy,i(sεcθ + cεsθ)δ̇ε̇
0




(10)
where Tx = Tξ and the inertia terms Iy,i in (10) computed
from the following equation

Ix,i 0 0
0 Iy,i 0
0 0 Iz,i


= R(ε, ξ̂)


Iξ 0 0
0 Iη 0
0 0 Iζ


R(ε, ξ̂)TD. (11)

2.3 Hydrodynamic model

With the assumption that the fluid is inviscid and incom-
pressible, and the fluid flow is irrotational, the so-called
linear potential flow theory (Falnes, 2002) provides an
approximation of the fluid-structure interaction through
a time-domain system of Volterra equations, written as

Σ :

Ihγ̈ = Tw + Th + Tr + Treac, (12)

where Ih ∈ R2×2 is the diagonal inertia matrix of the
SWINGO device, and Treac = [Tx, Ty]

T is the vector of re-
action forces defined in the Section 2.2. Tw = [Twθ

, Twδ
]T :

2 The notation cα and sα, with α ∈ R, stands for cosα and sinα,
respectively.

R+ → R2 defines the (uncontrollable) wave excitation
torque, Tr : R+ → R2 is the so-called radiation torque
vector, and Th : R+ → R2 describes the hydrostatic
restoring torque acting on the floater. Such a force is
defined proportional to the device (pitch) motion, and
can be hence written as Th = [Thθ

, Thδ
]T = −Shγ, where

Sh ∈ R2×2 is the so-called hydrostatic stiffness coefficient.
Note that, in this study, we are considering an incident
angle α = 45o, and then the wave excitation forces on
roll and pitch axes with respect to R(O′xyz) have the
same amplitude, given the floater symmetry. Moreover, the
radiation force is modelled using the well-known Cummins’
equation, i.e.

Tr(t) =


Trθ (t)
Trδ(t)


= −


m∞γ̈(t) +



R+

hr(t− τ)γ̇(τ)dτ


,

(13)
where the first term in the summation, proportional to
the device acceleration in pitch, corresponds to an inertial
increase due to the water displaced when the body moves,
while the second term corresponds with the dissipative
force, proportional to the body velocity. In particular,
the matrix m∞ ∈ R2×2 represents the so-called added-
mass at infinite frequency, given by the relation m∞ =
limω→+∞ Ar(ω), where Ar(ω) is the so-called frequency-
dependent added-mass coefficient (see (Falnes, 2002)).

2.4 Coupled mechanical-hydrodynamic model

Within this section, we provide the coupled mechanical-
hydrodynamic model σ, by considering the inherent me-
chanical coupling between the gyropendulum mechanism
and the floater, and the hydrodynamic (pitch and roll)
motion of the device activated by the wave input torque.
Therefore, by defining the hydrostatic stiffness matrix Sh

and added mass m∞ as follows

Ih =


Ihθ

0
0 Ihδ


, Sh =


Shθ

0
0 Shδ


,m∞ =


m∞

θ 0
0 m∞

δ


,

(14)
the nonlinear model σ of the SWINGO device can be
expressed, in compact form, as


Ihθ

+ Iξ +m∞
θ 0 Iξ

0 Ihδ
+ Iy,i +m∞

δ 0
Iξ 0 Iξ



θ̈

δ̈
ε̈




=


Twθ

+ Thθ
+ Trθ + Tx

Twδ
+ Thδ

+ Trδ + Ty

Tξ + TPTO


.

(15)

For the sake of completeness, we provide a derivation of the
Jacobian linearisation of equation (15) for the SWINGO
device as a ‘reference’ (i.e. benchmark) case model for the
analysis performed in Section 3. The linearisation proce-
dure is performed under the assumption of infinitesimally
small rotation about the equilibrium position (θ, δ, ε) =
(0,0,0), hence the associated linearised system σl is:


Ihθ

+ Iξ +m∞
θ 0 Iξ

0 Ihδ
+ Iη +m∞

δ 0
Iξ 0 Iξ



θ̈

δ̈
ε̈




=



Twθ

+ Thθ
+ Trθ − Jφδ̇ −mf lfg(θ + ε)

Twδ
+ Thδ

+ Trδ + Jφ(θ̇ + ε̇)−mf lfgδ

TPTO − Jφδ̇ −mf lfg(θ + ε)


 .

(16)
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of the former, HB is initiated from the lowest frequency
component considered, and its associated solution is used
as a starting point for the following (up) frequency, until
the highest frequency value studied is reached. The latter
is performed analogously, but in the opposite sense. Note
that the amplitude of the input signal, which effectively de-
pends upon the chosen frequency ω, is computed in terms
of the so-called excitation force kernel (see e.g. (Falnes,
2002)), taking into consideration a unitary free-surface
elevation. In particular all the frequency plots introduce
the frequency ratio ω/ωh, where ωh is the hydrodynamic
resonance of the system (e.g. see (Carapellese et al.,
2022b)). We note that both models present the optimality
power absorption condition at resonance, i.e. ω/ωh = 1,
although the optimal passive control parameters, denoted
with green and orange dots in the plot for the nonlinear
and linear models, are effectively different. The linear
model overestimates the gyropendulum motion, having an
impact on the extracted power, and on the control param-
eter selection. Then, the optimal damping copt computed
from the nonlinear model is about 30% larger than the
parameter designed from its linear counterpart. A deeper
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Fig. 3. AFC referred to the damping values corresponding
with points A’, B’, and C’ in Figure 2.

analysis is performed in Figure 3, where an appraisal of
the AFCs corresponding to the zero control condition (see
Figure 2 AFC A’), and the optimal damping condition
derived both via linear and nonlinear model (AFC B’ and
C’) are represented. We note that for a value of c̄ = 0,
two different solutions co-exist for the considered input
signal, depending on the initial condition of the system
(15). Such a bistability effect persists up to the value of
c̄ = 0.2, a condition where the nonlinear model converges
to a unique solution, independently from the HB sweep
direction. Therefore, for higher values of c̄, approaching
both B’ and C’, the behaviour of the nonlinear model
resembles a linear behaviour, since the damping effectively
ameliorates the main nonlinear effects. Nonetheless, the
motion resulting from the linear model, computed via
Jacobian linearisation, overestimate the response arising
from the nonlinear model in equation (15).

Even if the sweep bidirectionality approach is a widely
used numerical method for the definition of the AFC of
a nonlinear system, it does not necessarily capture all
the relevant system solutions. In the light of this, an
exhaustive search of potential SWINGO system solutions
is performed at resonance, i.e. when ω/ωh = 1, through
the HB procedure. The stability plot in Figure 4 introduces
the normalised gyropendulum kinematics variable ε̃n and
˙̃εn, as a function of c̄. The plot clearly shows three different

Fig. 4. Stability diagram of the solution ε̃n and ˙̃εn as a
function of c̄, for ω/ωh=1.

solution ‘zones’, where the number of system solutions
range from three in zone 1 (for a low value of c̄), to zone 3,
where one solution exists. The stability of every solution
presented in Figure 4 is addressed in detail in Section (4).

4. STABILITY ANALYSIS

We consider, within this section, the so-called van der
Pol plane (see (Jordan and Smith, 2007)) to discuss the
stability of the solutions of (15), corresponding to the set
of damping values {c̄1, c̄2, c̄3}, as defined in Figure 4.
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Fig. 5. Van der Pol plane referred to the three different
control conditions: c̄1, c̄2 and c̄3 (a). Normalised mean
power as a function of c̄ (b).

In particular, to investigate the stability of the different
solutions, we analyse the ‘transient states’, by using dif-
ferent initial conditions for the system under study. The
associated ‘paths’ can either converge to a stable periodic
orbit, or generate an unstable solution. For these purposes,
and in line with the HB theory previously considered, we
assume that the coefficients αi and βi in equation (20) are
slowly varying functions of time, at any rate near to peri-
odic solution. Assuming that at least one stable solution
exists, we apply the underlying concept of the van der Pol
diagram to study the stability properties of the solution
presented in Figure 4, defining the region of attraction
related to each solution. For the SWINGO device, we
recognise that the manifold, describing the evolution of the

Finally, note that, given the nonlinear model σ in (15), and
considering the (passive) control force defined in equation
(8)), we can compute the total absorbed mechanical power
Pa, for a given time interval Ξ = [0, T ] ⊂ R+, as

Pa =
1

T

∫

Ξ

cPTOε̇(t)
2dt =

1

T

∫

Ξ

Pi(t)dt, (17)

where T corresponds to the wave period, and Pi = cPTOε̇
2

is the associated instantaneous mechanical power.

2.5 Harmonic Balance approach

Harmonic balance (HB) is an extensively used technique
for dynamic analysis of nonlinear systems, especially
those inherently involving periodic motions such as the
SWINGO device. It is based upon an approximation of
the system variables in the form of a truncated Fourier
series. In this section, we introduce the main steps for the
HB implementation applied in this paper, which are based
upon the theory presented in e.g. (Giorgi and Faedo, 2022).

We begin by noting that equation (15) can be re-written in
terms of a continuous-time, state-space, system, defining
the dynamics of the SWINGO device such that

σ : { π̇ = f(π, fex), (18)

where π(t) = [ρ(t)T ρ̇(t)T]T ∈ Rn, with the variable ρ(t) =
[γ(t)T ε(t)]T ∈ R3 and, hence, n = 6, denotes the state-
vector of (18), fex(t) = Tw(t) ∈ R2 represents the forcing
term, and f : Rn × R2 → Rn is the corresponding state-
transition map (which can be straightforwardly derived
from (15)). As per standard HB theory, we assume that
the (steady-state) solution of (18) can be approximated in
terms of a finite-dimensional space H = span(X ), with

X = {cpωt, spωt}Np=1, (19)

where the set X is complete, and H ⊂ L2(Ω), with
Ω = [0, T ] ⊂ R+. In this particular study, we consider
an ansatz with only a single harmonic, i.e. N = 1 in (19).
To be precise, πi ≈ π̃i, where π̃i ∈ H , can be expressed
as follows

π̃i(t) = αicωt + βisωt, T =
2π

ω
, (20)

with i ∈ Nn, and {αi, βi} ⊂ R. We note that ω is called
herein fundamental harmonic. The approximation π̃ of the
full state-vector can be written as

π̃(t) =
[
Π̃T

1 . . . Π̃T
n

]T
Θ(t) = Π̃Θ(t), (21)

where {Π̃T
i ,Θ(t)} ⊂ R2, ∀i ∈ Nn, are defined such that

Π̃i = [αi βi] and Θ(t) = [cωt sωt]
T. The forcing function

fex can be expressed as a function of Θ through an
appropriate inclusion map, i.e.

fex(t) = Fexcωt + Feysωt = F̃Θ(t), (22)

where F̃ = [Fex Fey]. We define the residual function R as

R(Π̃, F̃ ,Θ) ≡ ˙̃π − f(π̃, fex) = Π̃Θ̇− f(Π̃Θ, F̃Θ), (23)

and let Dc = {µ(t − tj) = µj}qj=1 ⊂ Ω, with q > nN , be
a set of shifted generalised Dirac-delta functions. Finally,
using the standard inner product in L2(Ω), the expansion

coefficients Π̃, defining the approximating solution π̃, can
be computed via a Galerkin (pseudospectral) approach,
where the projection of the residual function (23) onto the
set Dc is forced to be zero for j ∈ Nq, i.e.

⟨R, µj⟩ = 0. (24)

3. PASSIVE CONTROL DESIGN

In this section, we introduce the dynamical characterisa-
tion of the SWINGO, excited by regular waves, through
the solution of the equation expressed in (15). Then, via
a HB procedure (see Section 2.5), we aim a) to assess
the dynamical properties of the WEC described equation
(15) (alternatively equation (16)), and b) compute the
optimal passive control parameter in equation (8) taking
into account the system stability.

Moreover, making explicit use of the corresponding AFC
for the subsequent analysis, we can now provide a defini-
tion of amplitude as a function of the input frequency as
follows: Given an excitation input fex with frequency ω
and amplitude F̃ (as in (22)), and the corresponding HB
solution, we define the associated set of amplitudes for the
set of variables {ε̃, ˙̃ε} ⊂ R+ as

ε̃ =
√
α2
3 + β2

3 ,
˙̃ε =

√
α2
6 + β2

6 . (25)

Based on such a definition, Figure 2 shows the SWINGO
performance in terms of both ε0 = ε̃/εcons, where εcons is
the constraint value related to the gyropendulm rotation
due to physical limitations of the device components, and
scaled power. The latter is defined by the ratio between the
mean power and maximum power Pamax derived from the
nonlinear model. Such performance indexes are evaluated
through the AFC as a function of c̄ = cPTO/copt, where
copt is the damping parameter corresponding with the con-
dition of maximum power transfer derived with the non-
linear model in equation (15). We recall that, analogously
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Fig. 2. Contour plot of the scaled rotation ε0 (left) and
scaled power (right) as a function of ω/ωh and c̄.

to (Carapellese et al., 2022a), the AFCs plots presented in
Figure 2 are computed based upon both a sweep-up and
sweep-down frequency-dependent procedure. In the case
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of the former, HB is initiated from the lowest frequency
component considered, and its associated solution is used
as a starting point for the following (up) frequency, until
the highest frequency value studied is reached. The latter
is performed analogously, but in the opposite sense. Note
that the amplitude of the input signal, which effectively de-
pends upon the chosen frequency ω, is computed in terms
of the so-called excitation force kernel (see e.g. (Falnes,
2002)), taking into consideration a unitary free-surface
elevation. In particular all the frequency plots introduce
the frequency ratio ω/ωh, where ωh is the hydrodynamic
resonance of the system (e.g. see (Carapellese et al.,
2022b)). We note that both models present the optimality
power absorption condition at resonance, i.e. ω/ωh = 1,
although the optimal passive control parameters, denoted
with green and orange dots in the plot for the nonlinear
and linear models, are effectively different. The linear
model overestimates the gyropendulum motion, having an
impact on the extracted power, and on the control param-
eter selection. Then, the optimal damping copt computed
from the nonlinear model is about 30% larger than the
parameter designed from its linear counterpart. A deeper
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Fig. 3. AFC referred to the damping values corresponding
with points A’, B’, and C’ in Figure 2.

analysis is performed in Figure 3, where an appraisal of
the AFCs corresponding to the zero control condition (see
Figure 2 AFC A’), and the optimal damping condition
derived both via linear and nonlinear model (AFC B’ and
C’) are represented. We note that for a value of c̄ = 0,
two different solutions co-exist for the considered input
signal, depending on the initial condition of the system
(15). Such a bistability effect persists up to the value of
c̄ = 0.2, a condition where the nonlinear model converges
to a unique solution, independently from the HB sweep
direction. Therefore, for higher values of c̄, approaching
both B’ and C’, the behaviour of the nonlinear model
resembles a linear behaviour, since the damping effectively
ameliorates the main nonlinear effects. Nonetheless, the
motion resulting from the linear model, computed via
Jacobian linearisation, overestimate the response arising
from the nonlinear model in equation (15).

Even if the sweep bidirectionality approach is a widely
used numerical method for the definition of the AFC of
a nonlinear system, it does not necessarily capture all
the relevant system solutions. In the light of this, an
exhaustive search of potential SWINGO system solutions
is performed at resonance, i.e. when ω/ωh = 1, through
the HB procedure. The stability plot in Figure 4 introduces
the normalised gyropendulum kinematics variable ε̃n and
˙̃εn, as a function of c̄. The plot clearly shows three different

Fig. 4. Stability diagram of the solution ε̃n and ˙̃εn as a
function of c̄, for ω/ωh=1.

solution ‘zones’, where the number of system solutions
range from three in zone 1 (for a low value of c̄), to zone 3,
where one solution exists. The stability of every solution
presented in Figure 4 is addressed in detail in Section (4).

4. STABILITY ANALYSIS

We consider, within this section, the so-called van der
Pol plane (see (Jordan and Smith, 2007)) to discuss the
stability of the solutions of (15), corresponding to the set
of damping values {c̄1, c̄2, c̄3}, as defined in Figure 4.
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Fig. 5. Van der Pol plane referred to the three different
control conditions: c̄1, c̄2 and c̄3 (a). Normalised mean
power as a function of c̄ (b).

In particular, to investigate the stability of the different
solutions, we analyse the ‘transient states’, by using dif-
ferent initial conditions for the system under study. The
associated ‘paths’ can either converge to a stable periodic
orbit, or generate an unstable solution. For these purposes,
and in line with the HB theory previously considered, we
assume that the coefficients αi and βi in equation (20) are
slowly varying functions of time, at any rate near to peri-
odic solution. Assuming that at least one stable solution
exists, we apply the underlying concept of the van der Pol
diagram to study the stability properties of the solution
presented in Figure 4, defining the region of attraction
related to each solution. For the SWINGO device, we
recognise that the manifold, describing the evolution of the
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Fig. 6. Time series of the instantaneous power (left),
gyropendulum kinematics (ε and ε̇ in the middle) and
phase diagrams (right) for different control conditions.

system, generates a multidimensional problem. Neverthe-
less, we do present in this paper a planar projection of the
system evolution focusing of the gyropendulum oscillation,
i.e. we assume

ε̂(t) = εx(t)cωht + εy(t)sωht, (26)

where ε̂(t) ∈ R is the approximation of the state ε, as
a function of the slowly varying amplitudes εx and εy.
The phase plane for (εx, εy) is called the van der Pol
plane. We show, from Figure 5, that solutions a and b
are stable, since they correspond to two different areas of
attraction, depending on the initial condition (highligthed
in the plot with square markers). The yellow dot in Figure
5 marks the third solution within zone 1 (see Figure 4)
corresponding to an unstable solution. When in the c̄2
condition, the system presents only one stable solution
converging to the point c. Note that, in Figure 5, the paths
that, even if vortexing with respect to the yellow dot, they
do still converge to the attractor c, are shown with light-
green lines. To further clarify this, Figure 5 highlights one
particular path by using a solid black line, which can be
clearly seen to converge to the c solution. Finally, for high
values of c̄, the system exhibits only one stable solution d.

From this analysis, we can determine the stable branches
corresponding with the gyropendulum kinematic param-
eters introduced in Figure 4, and hence derive the power
plot shown in Figure 5. We prove that, although multiple
solutions are present, the optimal physically achievable
maximum mean power value Pamax

happens for a value
of c̄ falling in zone 3, where a single solution exists. Figure
6 represents the time series of the instantaneous power Pi

normalised with respect to Pamax , and the gyropendulum
kinematic time series corresponding to each stable system
solution. We can appreciate the time traces and the phase
plot of the solution a and b, which correspond to the same
simulation condition, illustrating the bistability effect of
SWINGO small values of c̄.

5. CONCLUSION

From the nonlinear model of the SWINGO device with
respect to quasi-coordinates, we present, in this paper,
a dynamic analysis of the system, correlated with the
design of the passive control parameter that guarantees the
condition of maximum power transfer. All the analysis are
performed using the HB procedure, explicitly showing that
linear and nonlinear models present significant differences,
which have an impact on control synthesis and perfor-
mance assessment. Moreover, even if the system presents
a bistability behaviour for specific conditions, through the
van der Pol plane, we demonstrate that, in the optimality
condition, the system has a single point of attraction.
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