: The introduction of deep learning caused a significant breakthrough in digital pathology. Thanks to its capability of mining hidden data patterns in digitised histological slides to resolve diagnostic tasks and extract prognostic and predictive information. However, the high performance achieved in classification tasks depends on the availability of large datasets, whose collection and preprocessing are still time-consuming processes. Therefore, strategies to make these steps more efficient are worth investigation. This work introduces SlideTiler, an open-source software with a user-friendly graphical interface. SlideTiler can manage several image preprocessing phases through an intuitive workflow that does not require specific coding skills. The software was designed to provide direct access to virtual slides, allowing custom tiling of specific regions of interest drawn by the user, tile labelling, quality assessment, and direct export to dataset directories. To illustrate the functions and the scalability of SlideTiler, a deep learning-based classifier was implemented to classify 4 different tumour histotypes available in the TCGA repository. The results demonstrate the effectiveness of SlideTiler in facilitating data preprocessing and promoting accessibility to digitised pathology images for research purposes. Considering the increasing interest in deep learning applications of digital pathology, SlideTiler has a positive impact on this field. Moreover, SlideTiler has been conceived as a dynamic tool in constant evolution, and more updated and efficient versions will be released in the future.
SlideTiler: A dataset creator software for boosting deep learning on histological whole slide images / Barcellona, Leonardo; Nicolè, Lorenzo; Cappellesso, Rocco; Paolo Dei Tos, Angelo; Ghidoni, Stefano. - In: JOURNAL OF PATHOLOGY INFORMATICS. - ISSN 2153-3539. - 15:(2024). [10.1016/j.jpi.2023.100356]
SlideTiler: A dataset creator software for boosting deep learning on histological whole slide images
Leonardo Barcellona;
2024
Abstract
: The introduction of deep learning caused a significant breakthrough in digital pathology. Thanks to its capability of mining hidden data patterns in digitised histological slides to resolve diagnostic tasks and extract prognostic and predictive information. However, the high performance achieved in classification tasks depends on the availability of large datasets, whose collection and preprocessing are still time-consuming processes. Therefore, strategies to make these steps more efficient are worth investigation. This work introduces SlideTiler, an open-source software with a user-friendly graphical interface. SlideTiler can manage several image preprocessing phases through an intuitive workflow that does not require specific coding skills. The software was designed to provide direct access to virtual slides, allowing custom tiling of specific regions of interest drawn by the user, tile labelling, quality assessment, and direct export to dataset directories. To illustrate the functions and the scalability of SlideTiler, a deep learning-based classifier was implemented to classify 4 different tumour histotypes available in the TCGA repository. The results demonstrate the effectiveness of SlideTiler in facilitating data preprocessing and promoting accessibility to digitised pathology images for research purposes. Considering the increasing interest in deep learning applications of digital pathology, SlideTiler has a positive impact on this field. Moreover, SlideTiler has been conceived as a dynamic tool in constant evolution, and more updated and efficient versions will be released in the future.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2153353923001700-main.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987623