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The introduction of deep learning caused a significant breakthrough in digital pathology. Thanks to its capability of
mining hidden data patterns in digitised histological slides to resolve diagnostic tasks and extract prognostic and pre-
dictive information. However, the high performance achieved in classification tasks depends on the availability of
large datasets, whose collection and preprocessing are still time-consuming processes. Therefore, strategies to make
these steps more efficient are worth investigation. This work introduces SlideTiler, an open-source software with a
user-friendly graphical interface. SlideTiler can manage several image preprocessing phases through an intuitive
workflow that does not require specific coding skills. The software was designed to provide direct access to virtual
slides, allowing custom tiling of specific regions of interest drawn by the user, tile labelling, quality assessment, and
direct export to dataset directories. To illustrate the functions and the scalability of SlideTiler, a deep learning-based
classifier was implemented to classify 4 different tumour histotypes available in the TCGA repository. The results dem-
onstrate the effectiveness of SlideTiler in facilitating data preprocessing andpromoting accessibility to digitised pathol-
ogy images for research purposes. Considering the increasing interest in deep learning applications of digital
pathology, SlideTiler has a positive impact on this field. Moreover, SlideTiler has been conceived as a dynamic tool
in constant evolution, and more updated and efficient versions will be released in the future.
Introduction

In the era of precisionmedicine,microscopic examination of tissuemor-
phology remains the cornerstone for clinical decisions and research in
oncology.1 Pathologists play a crucial role in providing a diagnosis, as
well as prognostic and predictive information about a disease by combining
data from morphological, phenotypical, ultrastructural, and molecular
features.2 The digitisation process in pathology laboratories is leading to
significant changes, opportunities, and challenges in this field. Thanks to
the introduction of digital Whole Slide Images (WSIs), pathologists can
now work directly on digital images instead of the classical slides observed
under the microscope.3

Recent developments in computing sciences, especially in digital image
processing, are offering novel tools for advanced WSI analysis.4 In particu-
lar, Deep Learning (DL) is a breakthrough technology that is having a
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crucial impact on medical image processing.5,6 DL for WSI analysis is
mainly based on Convolutional Neural Networks (CNNs), which apply a
hierarchical data processing workflow to autonomously identify local pat-
terns hidden in the images to solve specific tasks, such as tissue
classification.7,8 Although CNNs are still the dominant approach in medical
image analysis, many recent works started exploiting a new type of neural
network named Vision Transformer (VT),9 that are able to achieve superior
performance thanks to their ability to manage long-range dependencies
through a self-attention mechanism.

Despite the great potential of DL and the encouraging results obtained
so far in pathology applications, some relevant challenges are still to be
overcome. The first challenge in implementing DL models for clinical
tasks, such as cancer recognition or cell segmentation, is to create high-
quality datasets with an exhaustive representation of the problem to be
tackled.10 Datasets for training DL networks for classification tasks are
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composed of images with a label that identifies the category (or class) the
image belongs to. Such label identifies one choice among a predetermined
set of categories.

TheWSI is a gigapixel image that is too large to be used as input for a DL
model, and most of the pixels that compose the image are not useful for
solving the task.11 Unwanted elements, such as tissue artefacts and
non-informative background, should be excluded from the training data.
To pursue this goal, specific areas within the WSI should be selected and
reduced into small annotated tiles that may be used as input data.12

Manual processing of WSIs to create annotated datasets is a time-
consuming and tedious activity. Currently, several open-access software
tools exist for managing preprocessing tasks in digital pathology,13 in-
cluding QuPath,14 ASAP,15 Histoclean,16 QuickAnnotator,17 Orbit,18

and DSA.19 These tools can efficiently handle preprocessing tasks, such
as annotation, stain normalisation, colour deconvolution, and segmenta-
tion. Most of these tools, such as QuPath, Orbit, and DSA, present an
excellent graphical interface also offering a web-based environment
(Orbit, DSA). However, a direct and automatised workflow to manage
image tiling at different magnification levels is still missing, or requires
coding skills. Other tools, such as QuickAnnotator, require Python and
Docker environment, hard to be deployed by pathologists or non-IT
researchers.

SlideTiler is designed to overcome the limitations of the other available
tools thanks to a graphical labelling tool that allows pathologists and bio-
medical researchers to create large annotated datasets with only few simple
steps. The tool is capable of opening slides generated by scanners of many
vendors. Using the interactive interface, pathologists can label these images
with the help of sophisticated functionalities. After opening the image, the
pathologist can draw regions-of-interest (ROIs), namely areas that are
going to be labelled. If the user makes a mistake while drawing the ROI,
he/she can easily adjust its position and shape. Once the ROI is ready, ded-
icated options allow setting the dimension of the tiles, the squared region
inside a ROI, and the resolution of their content. It is then possible to
Fig. 1. Annotation procedure. SlideTiler can open images from a repository. Using the g
tiles are generated and filtered. Finally, the tiles are stored along with the annotations.
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associate a label to all the tiles inside the region. Labels can be configured
by the user depending on the number of different categories that should
be distinguished. In the final stage, SlideTiler saves this information to-
gether with the data in a hierarchical structure that is easy to exploit for
training machine learning algorithms.

To demonstrate its scalability, we used SlideTiler to create a dataset
with 4 different and clinically relevant tumour histotypes, then used to
feed a 4-class classifier to automatically recognise each histotype. The
whole workflow is simple, as shown in Fig. 1, and can be fulfilled with-
out specific informatic skills. Thanks to SlideTiler, the creation of
datasets is more efficient and accessible to a large number of clinical re-
searchers, who can accurately annotate data. Consequently, more high-
quality data will be available, boosting DL models, which accuracy
strongly depends on the data used for training.20 SlideTiler can also
play a pivotal role in clinical and translational applications, in which it
can make valuable contributions to the development of digital pipelines
for biomarkers discovery to predict patient prognosis and treatment
response, and for advanced tissue classification, which is useful for
pathologist assistance.21

SlideTiler

Input and output

SlideTiler can visualise WSIs thanks to a graphical user interface and al-
lows users to interact with the image to create annotations. WSIs are
organised into multiple copies of the same image at different resolutions,
as shown in Fig. 2. Such pyramidal structure is used to efficiently pass
from one portion of the image to another because the full-resolution
image would use too many computational resources and is difficult to pro-
cess. The image at the lowest level (level zero) is at full-resolution, whereas
at higher levels the resolution is reduced. SlideTiler can manage all the
layers of the WSI, allowing users to change the resolution of the annotation
raphic interface, he/she depicts the region of interest and selects the class. Then, the



Fig. 2. The structure of a whole slide image. The lowest level is the full-resolution image. The higher the level, the lower the resolution.
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and the resolution of the visualised image efficiently. This visualisation of
the WSI and the navigation among levels is performed using OpenSlide,22

a library offering a shared interface for many scanner vendors and WSI
formats: Aperio (.svs,.tif), DICOM (.dcm), Hamamatsu (.vms,.vmu,.ndpi),
Leica (.scn), MIRAX (.mrxs), Philips (.tiff), Sakura (.svslide), Trestle (.tif),
and Ventana (.bif, .tif). Since pathologists may work with different scanner
models, SlideTiler manages all these file types.

SlideTiler associates eachWSI with the information provided by the pa-
thologist that is working on the image (e.g., defining ROIs) in the form of
additionalfiles saved to disk. The tool is also capable of recovering previous
annotations, where available, to keep track of what was already processed
and avoid duplicating the annotations, since training models using dupli-
cated data with different labels may reduce accuracy. An overview of the
main interface of SlideTiler is shown in Fig. 3.
Fig. 3. The graphical interface of SlideTiler. Numbers 1–5 are buttons to change the
window. For example, for annotating the ROI, the tiles orfiltering. Numbers 6 and 7
are the input and output files. Number 8 allows changing files. Number 9 highlight
the part where the user can set different label (classes). Number 10 is the output
format. Numbers 11 and 13 allow rotating and changing visualisation scale.
Number 12 shows the canvas where the slide is shown and where the user may
interact to annotate the image.

3

ROI creation and tiles generation

A ROI is a polygon whose vertices are defined by the user with left
clicks. Once the user creates a ROI, this can still be modified in case of mis-
takes. Tiles are squared regions inside a ROI with a side that is defined in
pixels, as shown in Fig. 4, where a ROI and the tiles generated inside it
can be seen. SlideTiler can convert the dimensions from pixels to metres
to give feedback on the real size of the tiles created. By default, these are
referred to level zero (maximum resolution), but the layer can be changed
to create tiles at higher levels (lower resolutions).

Depending on user’s preference, tiles are taken either when they are
completely included in the ROI, or when a there is a certain degree of over-
lapping between ROI and tile—the minimum overlap required can be
selected by the user. Furthermore, the user can manually remove and add
tiles inside the ROI, in case the polygon includes some unwanted areas
that should not be saved or missing some relevant portions.

Saving

Since pathologists may want to annotate different types of cancers or
diseases, SlideTiler manages the dynamic setting of the labels: the user
can add or remove labels using the intuitive graphical interface.

When the user saves the tiles, data are stored in a hierarchical structure,
as depicted in Fig. 5. Themain directory inherits the same name of the slide
to keep track of images already labelled. Inside the output directory, data
are subdivided into 2 folders: images and descriptions. The former contains
all the tiles in the exported format identified with a progressive number,
while the latter contains 2 more files in csv format containing information
about the ROIs, such as dimension and position, and about each tile,
namely label and generating ROI. Tiles can be saved in 2 popular formats:
jpeg and png.

Filters

SlideTiler offers a filtering section that implements intelligent function-
alities that help annotate only relevant parts of the image. For example, it
incorporates StarDist,23 a CNN model that detects and segments cells and
nuclei in microscopy images. Thanks to StarDist, the user can set a custom
threshold linked to the overall percentage of cell nuclei detected in the tiles
—tiles with inadequate cellularity are automatically excluded from the
dataset. The filter section is designed in order to facilitate the introduction
of more state-of-the-art filters in the future, to improve datasets creation
and to facilitate the annotation process.



Fig. 4. The blue polygon is the ROI, whereas the red squares are the tiles generated inside the ROI.
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Releases

SlideTiler is an open-source software programmed in Python and can be
used without restrictions. Moreover, any developer can update or improve
its functionalities to adapt the software to new situations or needs. The user
interface is created using Tkinter, a Python library for graphical widgets,
and Matplotlib.

In addition to having the code open-source, some standalone versions
are freely distributed for Windows 10 and 11 operating systems and for
Linux systems. These standalone versions do not require any installation,
a great advantage for the users without significant informatic skills willing
to exploit the software for annotating the WSIs. For Windows, the
standalone versions are available as executable files (.exe extension) and
Fig. 5. The output structure of SlideTiler. Once the user is satisfied with the annotatio
enumerated. A ‘descriptions’ folder stores the files containing the tile’s characteristics.
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its size is about 1.3 GBytes due to the many libraries used to develop the
application.

Experiments and results

Dataset creation using SlideTiler

To demonstrate the functionalities of SlideTiler, the tool was used to
create a dataset suitable for a medical image classification task. Four cate-
gories were considered: primary skin melanoma (SKCM), glioblastoma
(GBM), breast cancer (BRCA), and high-grade myxofibrosarcoma (MFS).
These tumour entitieswere selectedfirstly according to the high clinical rel-
evance, and secondly, according to the specific diagnostic expertise of the
n, he/she can save it. The tiles are saved in a ‘images; folder and are progressively



Table 1
Hyperparameters for the grid search. For the augmentation, mix1 is rotations with
blur,mix2 adds bright and contrast augmentations tomix1. Finally,mix3 is the com-
bination of all the augmentations considered.

Parameter Values

Learning rate 1 10 − 3, 5 10 − 4, 1 10 − 4, 5 10 − 5, 1 10 − 5

Batch size 32, 64
Image size 64 64, 128 128, 224 224
Augmentation Random gaussian blur, random rotations and flips, random contrast,

random saturation, random brightness, random hue-shift, mix1, mix2,
mix3
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pathologists involved in this study (SKCM and BRCA: R.C.; GBM and MFS:
L.N.). From The Cancer Genome Atlas (TCGA), we selected 399 WSIs in-
cluding 101 WSIs for MFS; 98 WSIs for BRCA; 100 WSI for GBM and
SKCM. Each WSI corresponds to a single patient. Diagnostic haematoxylin
& eosin slides for each casewere downloaded from the Genomic Data Com-
mons Portal2. Before inclusion, all the cases were reviewed by a pathologist
—the diagnosis was confirmed according to the latest edition of the corre-
sponding World Health Organisation Classification of Tumours. After data
download, a pathologist used SlideTiler to open each slide, drew a ROI in-
cluding only cancer tissue, and performed ROI tiling to create tiles of size
512×512 pixels at 40×magnification power. The generated tiles were fil-
tered before export to include only tiles with at least 65% of the tile area
covered by cell nuclei. To avoid splitting tiles of the same patient among
training, validation, and test sets, WSIs of each class were randomly
subdivided at patient level to form the training dataset (about 60% of the
cases), the validation dataset (about 20%), and the test dataset (about
20%). Overall, 249.462 tiles have been generated: 58.994 tiles for BRCA,
29.764 tiles for GBM, 43.548 tiles for MFS, and 117.156 tiles for MM.

It should be observed that the dataset was obtained from 399WSIs gen-
erating 249.462 tiles—an average of 625 tiles per slide. However, it should
be pointed out that tiles taken from the same WSI have a high level of cor-
relation, which might interfere with the training process. To reduce corre-
lation within the dataset, in the following experiments the training and
validation datasets were sub-sampled: the training set contains 2951,
2994, 2772, and 2840 randomly selected tiles for BRCA, GBM, MFS, and
SKCM, respectively, and the validations set 1001, 973, 1001, and 951
tiles for BRCA, GBM, MFS, and SKCM. However, it is worth highlighting
that all the test patients’ tiles have been used for the evaluation: 10 942
from 21 patients for BRCA, 5864 tiles from 21 patients for GBM, 9882
from 19 patients for MFS, and 27 552 tiles from 20 patients for SKCM.

Training of CNN and transformer models

The dataset was used for training state-of-the-art models for image clas-
sification. We tested 5 different models: 4 Convolutional Neural Networks,
namely Resnet 50,24 Resnet 101,24 EfficientNet B4,25 and VGG 1626 and a
Vision Transformer model, DeiT.27 We implemented these models using
PyTorch and the Timm library.28 For each model, we started from the net-
work pretrained on the ImageNet dataset29; the Adam optimizer and the
cross-entropy loss were employed for training.

The networks were trained varying a number of hyperparameters,
namely: learning rate, batch size, image size, and augmentation. Image
sizewas varied considering tiles having different numbers of pixels but cov-
ering the same portion of the WSI, which means modifying the resolution.
Augmentation was perfomed randomly modifying gaussian blur, rotations
and flips, and image contrast, saturation, brightness, and hue. The hue-
shift is a technique for uniformly switching the hue of every pixel in the
image—this causes a shift in colour, which is useful to obtain a network
that can successfully copewith tiles prepared usingmultiple colouring tech-
niques. Combinations of the augmentation factors were also considered:
mix1 is the mixture of random rotations with blur filter, mix2 adds bright
and contrast augmentations to mix1, and mix3 is the combination of all
the augmentations considered. The best hyperparameters were chosen
based on a grid search approach: the models were trained with every possi-
ble combination of the hyperparameters among the values reported in
Table 1.

The training dataset contains an enormous number of tiles. Conse-
quently, the parameters of the model change drastically after each
epoch, making the early stopping unable to prevent overfitting. If we
wait until the end of the entire epoch to stop the training, the model
may end in a highly sub-optimal solution. To cope with this problem
and avoid overfitting, we performed intra-training validation steps: the
models were validated 8 times for each training step, meaning that we
2 https://portal.gdc.cancer.gov.
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stopped each epoch before the end to check the effect on the validation
dataset, applying early stopping after 5 consecutive validation steps
without improvements.

Results

For the experiments, we report the followingmetrics: accuracy, sensitiv-
ity, specificity, and F1-score. The accuracy is the percentage of correctly
classified in the entire dataset. The sensitivity is the ratio between correctly
predicted positive and the total number of actual positive instances. The
specificity is the ratio of true-negative predictions to the total number of ac-
tual negative instances. A higher sensitivity score indicates a higher ability
to detect positive instances accurately, whereas a higher value of specificity
indicates a higher accuracy in identifying negative cases. The F1-score is
the harmonic mean of sensitivity and precision, where the precision is the
proportion of true-positive predictions compared to all positive predictions
made by the model. All the metrics are computed on each single tile. For
each disease, sensitivity and specificity are calculated considering other
classes as negative samples. Consequently, the sensitivity is the probability
of detecting a positive result conditioned on positive samples, whereas the
specificity considers the negative samples.

As previously mentioned, we adopted a grid-search approach: the best
model was chosen based on the highest F1-score. Table 2 shows the results
in the test dataset. The best-performing model was found to be DeiT,27

which exploits the self-attention mechanism to relate different parts of
the tiles to make the final prediction. It is easy to notice that all the models
reported in the table share the same image size (224×224 pixels), meaning
that a higher resolution helps extract relevant features for the final classifi-
cation. This hypothesis is confirmed by Fig. 6, where the F1-score obtained
by each model increases by increasing the input tile size, the maximum
value being limited by memory constraints of the GPU (NVidia GeForce
GTX 2080 Ti with 12 GByte). We also evaluated the effect of the augmenta-
tions used in the grid search approach (Table 1) by selecting the best model
for each augmentation and tile size. We noticed that the augmentation
where the hue was changed obtained scarce results. Table 3 proves the ef-
fect by reporting the best results obtained and the results using the hue aug-
mentation for each image size. Besides the decrease in performance due to
the hue-shift, no other significant patterns were visible. The best augmenta-
tion depends on the model and the input size.

We then evaluated the results considering the whole slide images in-
stead of the single tiles. For computing the final prediction, we merged
the classification of the patient’s tiles with a majority voting scheme.
Fig. 7 shows some examples of predictions on WSIs. The WSI is divided
into tiles, each one is then separately classified by the models. Thanks to
the high accuracy obtained on single tiles, almost every patient is correctly
classified. A curious aspect emerged from the results reported in Table 4:
DeiT27 was not confirmed as the best model. Instead, EfficieNet25 obtained
the best results in all metrics.

The deep learning models presented so far can effectively support pa-
thologists during the diagnosis thanks to the high performance level
achieved. This was possible thanks to the large training dataset, that was
easily generated thanks to SlideTiler, that allowed pathologists to extract
annotations of WSIs.

https://portal.gdc.cancer.gov


Table 2
Results of the 5 models. The table reports the accuracy, F1-score, the sensitivity, and specificity. The hyperparameters are also reported: LR is the learning rate of the
optimiser, BS is the batch size used during training, Img size is the dimension of the squared input image, and augmentation reports the type of data augmentation done dur-
ing training. The bold represents the highest value.

Model Img size LR BS Augmentation Accuracy F1-score Sensitivity Specificity

VGG1626 224 224 1 10 − 4 32 Saturation 89.08 89.03 87.09 94.88
ResNet 5024 224 224 1 10 − 4 64 mix1 90.99 90.61 90.89 96.30
ResNet 10124 224 224 5 10 − 4 32 Rotations and flips 90.91 90.49 89.51 96.11
EfficientNet B425 224 224 1 10 − 3 32 mix2 89.82 89.18 88.86 95.55
DeiT27 224 224 5 10 − 5 32 Contrast 91.43 91.22 91.24 96.39

Fig. 6. F1-Score correlated to the input image size. Increasing the size of the input image brings positive effects for each model tested.

Table 3
Comparison of hue-shift augmentation and the best augmentation in terms of F1-score. Hue-shift is always highly reducing the F1-score, meaning that changing the real col-
our components of the image reduces performance.

Image size Augmentation VGG 1626 ResNet 5024 ResNet 10124 EfficientNet B425 DeiT27

64 64 Best 82.71 83.35 78.97 77.19 83.27
64 64 Hue 78.40 77.62 75.04 71.24 80.82
64 64 Difference -4.30 -5.73 -3.93 -5.95 -2.45
128 128 Best 86.56 88.79 87.65 86.67 88.71
128 128 Hue 82.06 86.56 78.87 81.16 85.43
128 128 Difference -4.49 -2.23 -8.78 -5.51 -3.28
224 224 Best 89.03 90.61 90.49 89.18 91.22
224 224 Hue 80.12 86.19 83.58 84.91 84.87
224 224 Difference -8.92 -4.43 -6.91 -4.28 -6.35
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Discussion

The increasing use of AI is driving major advancements in healthcare.30

By introducing SlideTiler, we proposed a tool to address the challenge of
creating high-quality datasets from WSIs. SlideTiler offers a simple and di-
rect way to generate accurate datasets with no limitation in class numbers,
andmanaging, through a simple and intuitive graphical user interface, ROIs
shape, tiles dimension, tissue magnification level and tiles filtering accord-
ing to cellularity.

Comparing SlideTiler against other available tools (see Table 5), wefind
that it sharesmost of the key characteristics, but allows exporting tileswith-
out the need for custom code implementation. This aspect is crucial for cre-
ating a tool that is manageable and accessible for every pathologist
6

regardless of their background in informatics. In this study, 2 pathologists
used SlideTiler directly on their PC, exploiting the standalone version avail-
able for Windows 10 without installing the software, thus exploiting a
major strength of the software. SlideTiler managed about 400 different
WSIs and the users did not report any problem. WSIs of each class were
stored in the same folder because Slidetiler allows users to open or close
slides directly from the file management window, increasing the productiv-
ity of the annotation process. The procedure to generate tiles for each class
of cancer was entirely managed by 2 pathologists without the need for soft-
ware developers, highlighting the scalability of SlideTiler within a clinical
context.

Experiments focused on a 4-class deep-classifier trained and tested
using tiles generated by SlideTiler. The tiles were used to feed 4 different



(a) (b) (c)

Fig. 7. Examples of predictions onWSIs—(a) shows the real image, (b) the probability of the correct class, and (c) the correctly predicted labels. In the latter, using a majority
voting is possible to retrieve the correct label (in cyan) even if some tiles are wrongly predicted (in red). Each row shows a different class: skinmelanoma (SKCM), high-grade
myxofibrosarcoma (MFS), glioblastoma (GBM), and breast cancer (BRCA).

Table 4
Results of the 5 models. The table reports the accuracy, F1-score, the sensitivity, and specificity. The hyperparameters are also reported: LR is the learning rate of the
optimiser, BS is the batch size used during training, Img size is the dimension of the squared input image, and augmentation reports the type of data augmentation done dur-
ing training. The bold represents the highest value.

Model Img size LR BS Augmentation Accuracy F1-score sensitivity specificity

VGG1626 224 224 1 10 − 4 32 Saturation 95.06 95.12 94.99 98.36
ResNet 5024 224 224 1 10 − 4 64 mix1 95.06 95.05 94.99 98.35
ResNet 10124 224 224 5 10 − 4 32 Rotations and flips 93.83 93.98 93.99 97.94
EfficientNet B425 224 224 1 10 − 3 32 mix2 98.77 98.78 98.81 99.59
DeiT27 224 224 5 10 − 5 32 Contrast 95.06 95.14 95.05 98.35

Table 5
Comparison of SlideTiler against other open-source programs. For each tool, we report several features: (i) it is available open-source; (ii) the precompiled executable is avail-
able for download (.EXE); (iii) it enablesWSI navigation; (iv) it enables the user to annotate areas of theWSI; (v) it provides an option for dividing areas ofWSI into tiles; (vi) it
lets the user export the tiles; (vii) the tool provides direct access to machine/deep learning models. In the table, (*) identifies the tools that require custom code implemen-
tation to export tiles.

Tool Open-source .EXE WSI navigation Annotation Tiling Tiles exporting Direct analysis

ASAP15 Yes Yes Yes Yes No No No
QuickAnnotator17 Yes No Yes Yes No No No
DSA19 Yes No Yes Yes No No No
Qupath14 Yes Yes Yes Yes Yes No* Yes
Orbit18 Yes Yes Yes Yes No No Yes
SlideTiler Yes Yes Yes Yes Yes Yes No

L. Barcellona et al. Journal of Pathology Informatics 15 (2024) 100356

7



L. Barcellona et al. Journal of Pathology Informatics 15 (2024) 100356
CNN models commonly used to solve histopathological classification tasks
(ResNet50, ResNet101, EfficientB4, and VGG16), and a transformer model
(DeiT). The latter showed higher accuracy in the single tile classification.
However, in the whole slide image prediction task throughmajority voting,
EfficientNet obtained better results than DeiT. The results with single tiles
indicate that DeiT is the model with the highest capability of learning the
task, but the majority voting may not be the best approach for suchmodels.
Although there are no exhaustive studies that compare performances be-
tween CNN-based systems and VTs, studies on medical imaging reported
better results for VTs.9 In this work, we confirm such hypothesis also for
the tiles classification into primary skin melanoma, glioblastoma, breast
cancer, and high-grade myxofibrosarcoma.

We hypothesise that the DeiT model is more capable of exploiting long-
range connections in images and is less related to colour patterns, following
the studies on VT models.31,32,33 These characteristics are particularly rele-
vant in histological images, in which the features reflecting the biology of
the underlying disease may depend on complex architectural characteris-
tics of the tissue rather than single image objects as single cells.

Conclusions

Artificial intelligence is playing a major role in revolutionising the way
diseases are diagnosed and treated. However, the success of AI and data-
driven technologies largely depends on the quality of the data used to
train them. To achieve high accuracy and a strong generalisation, it is cru-
cial to ensure that input data is of the highest quality.

In this paper, we addressed the challenge of creating high-quality
datasets for pathological research, specifically for DL analysis of digital
WSIs. We introduced a graphical tool called SlideTiler that enables pa-
thologists and researchers to quickly and easily create large annotated
datasets without requiring specific informatic skills and in few simple
steps.

SlideTiler represents a valuable tool for creating annotated datasets, as
demonstrated by the experiments reported. However, some limitations
and critical points are still recognised, opening the way to future develop-
ments. First, the software is only compatible with Windows 10, 11, and
Linux, which limits its accessibility to researchers who use other operating
systems. Moreover, the current downloadable executable file for SlideTiler
occupies a large amount of space,making it inconvenient for users with lim-
ited storage capacity. A solution to these problems is offering a cloud-based
version of the software with a web-based interface, which does not require
the user to download and store the application locally. Second, the software
currently has limited capabilities for automatically discarding tiles with
artefacts, which could interfere with the analysis. This is a time-
consuming task for users, as it must be done by scrolling through the indi-
vidual tiles. A solution to this limitation is integrating into SlideTiler
additional filters that can classify tiles and automatically remove those
affected by artefacts. Third, SlideTiler only opens one slide at a time,
which is a limitation for researchers who need to compare multiple slides
simultaneously. Further releases will integrate a feature that allows users
to open and view multiple slides simultaneously in different windows
or tabs.

Data availability

We will release the tool on github: https://github.com/leobarcellona/
SlideTiler.
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