Stability of Wardrop equilibria is analyzed for dynamical transportation networks in which the drivers' route choices are influenced by information at multiple temporal and spatial scales. The considered model involves a continuum of indistinguishable drivers commuting between a common origin/destination pair in an acyclic transportation network. The drivers' route choices are affected by their, relatively infrequent, perturbed best responses to global information about the current network congestion levels, as well as their instantaneous local observation of the immediate surroundings as they transit through the network. A novel model is proposed for the drivers' route choice behavior, exhibiting local consistency with their preference toward globally less congested paths as well as myopic decisions in favor of locally less congested paths. The simultaneous evolution of the traffic congestion on the network and of the aggregate path preference is modeled by a system of coupled ordinary differential equations. The main result shows that, if the frequency of updates of path preferences is sufficiently small as compared to the frequency of the traffic flow dynamics, then the state of the transportation network ultimately approaches a neighborhood of the Wardrop equilibrium. The proposed analysis combines techniques from singular perturbation theory, evolutionary game theory, and cooperative dynamical systems. © 2011 AACC American Automatic Control Council.

Stability analysis of transportation networks with multiscale driver decisions / Como, G.; Savla, K.; Acemoglu, D.; Dahleh, M. A.; Frazzoli, E.. - (2011), pp. 2436-2441. (Intervento presentato al convegno American Control Conference tenutosi a San Francisco (USA) nel June 29 - July 01, 2011) [10.1109/acc.2011.5991560].

Stability analysis of transportation networks with multiscale driver decisions

Como G.;
2011

Abstract

Stability of Wardrop equilibria is analyzed for dynamical transportation networks in which the drivers' route choices are influenced by information at multiple temporal and spatial scales. The considered model involves a continuum of indistinguishable drivers commuting between a common origin/destination pair in an acyclic transportation network. The drivers' route choices are affected by their, relatively infrequent, perturbed best responses to global information about the current network congestion levels, as well as their instantaneous local observation of the immediate surroundings as they transit through the network. A novel model is proposed for the drivers' route choice behavior, exhibiting local consistency with their preference toward globally less congested paths as well as myopic decisions in favor of locally less congested paths. The simultaneous evolution of the traffic congestion on the network and of the aggregate path preference is modeled by a system of coupled ordinary differential equations. The main result shows that, if the frequency of updates of path preferences is sufficiently small as compared to the frequency of the traffic flow dynamics, then the state of the transportation network ultimately approaches a neighborhood of the Wardrop equilibrium. The proposed analysis combines techniques from singular perturbation theory, evolutionary game theory, and cooperative dynamical systems. © 2011 AACC American Automatic Control Council.
File in questo prodotto:
File Dimensione Formato  
Stability analysis of transportation networks with multiscale driver decisions.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 244.09 kB
Formato Adobe PDF
244.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987581