This paper presents an experimental insight into the performance of a mechanical oscillator consisting of an X-shaped-spring configuration. This configuration achieves an overall softening characteristic with quasi-zero stiffness behaviour far away from the static equilibrium point. Such a geometrical nonlinear configuration has attracted significant research attention in the last few years, particularly for its application as a vibration isolator with the possibility to extend the quasi-zero-stiffness region beyond that of the classical three-spring nonlinear isolator. However, previous experimental evidence has been limited to small amplitude vibration excitation only. Furthermore, it has been focused mainly on the isolation region, rather than on the large amplitude response, thus circumventing an insight on the damping effects and its modelling. To address this gap, in this paper, both frequency sweeps and random excitations are applied to a prototype device for experimental characterization. A nonlinear stiffness model is developed based on the geometry of the system and a nonlinear damping model is assumed based on experimental observation. The proposed model accurately describes the dynamic behaviour of the system as shown by comparison of theoretical and experimental data.
Experimental characterization of a nonlinear mechanical oscillator with softening behaviour for large displacements / Anastasio, Dario; Marchesiello, Stefano; Svelto, Cesare; Gatti, Gianluca. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - ELETTRONICO. - (2024). [10.1007/s11071-024-09435-9]
Experimental characterization of a nonlinear mechanical oscillator with softening behaviour for large displacements
Anastasio, Dario;Marchesiello, Stefano;
2024
Abstract
This paper presents an experimental insight into the performance of a mechanical oscillator consisting of an X-shaped-spring configuration. This configuration achieves an overall softening characteristic with quasi-zero stiffness behaviour far away from the static equilibrium point. Such a geometrical nonlinear configuration has attracted significant research attention in the last few years, particularly for its application as a vibration isolator with the possibility to extend the quasi-zero-stiffness region beyond that of the classical three-spring nonlinear isolator. However, previous experimental evidence has been limited to small amplitude vibration excitation only. Furthermore, it has been focused mainly on the isolation region, rather than on the large amplitude response, thus circumventing an insight on the damping effects and its modelling. To address this gap, in this paper, both frequency sweeps and random excitations are applied to a prototype device for experimental characterization. A nonlinear stiffness model is developed based on the geometry of the system and a nonlinear damping model is assumed based on experimental observation. The proposed model accurately describes the dynamic behaviour of the system as shown by comparison of theoretical and experimental data.File | Dimensione | Formato | |
---|---|---|---|
s11071-024-09435-9.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.7 MB
Formato
Adobe PDF
|
3.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2987523