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Abstract This paper presents an experimental

insight into the performance of a mechanical oscillator

consisting of an X-shaped-spring configuration. This

configuration achieves an overall softening character-

istic with quasi-zero stiffness behaviour far away from

the static equilibrium point. Such a geometrical

nonlinear configuration has attracted significant

research attention in the last few years, particularly

for its application as a vibration isolator with the

possibility to extend the quasi-zero-stiffness region

beyond that of the classical three-spring nonlinear

isolator. However, previous experimental evidence

has been limited to small amplitude vibration excita-

tion only. Furthermore, it has been focused mainly on

the isolation region, rather than on the large amplitude

response, thus circumventing an insight on the

damping effects and its modelling. To address this

gap, in this paper, both frequency sweeps and random

excitations are applied to a prototype device for

experimental characterization. A nonlinear stiffness

model is developed based on the geometry of the

system and a nonlinear damping model is assumed

based on experimental observation. The proposed

model accurately describes the dynamic behaviour of

the system as shown by comparison of theoretical and

experimental data.

Keywords Vibration control � Vibration isolation �
Negative stiffness � Nonlinear damping � Nonlinear
stiffness � Softening stiffness

1 Introduction

Nonlinear oscillators have received significant atten-

tion in recent decades to improve the performance of

dynamical systems, particularly within the fields of

vibration isolation [1], vibration energy harvesting [2],

vibration absorption [3], shock isolation [4], and

broader vibration control applications [5].

Traditionally, nonlinearity has been incorporated

into mechanical systems by properly designing and

customizing the stiffness of elastic suspensions

through specific geometric configurations of springs

and mechanisms. One typical application is the
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inclusion of positive and negative stiffness elements in

parallel to achieve geometrical nonlinear stiffness.

Diamond structures have been suggested for appli-

cations involving vibration isolation [6–8] and vibra-

tion absorption [9]. Scissor-like or X-shaped-link

structures have been proposed for purposes such as

vibration isolation [10–12], vibration absorption [13],

vibration energy harvesting [2], and for the develop-

ment of new metamaterials [14]. In efforts to improve

vibration isolation performance, various combinations

of linkages and springs have been explored [15, 16],

drawing inspiration from biological sources like limbs

[17–19], paws [20, 21], cockroaches [22], and biolog-

ical systems in general [23, 24].

Nonlinear force–displacement curves have also

been achieved by simply connecting linear springs

arranged in a nonlinear geometric configuration. To

this end, designs employing one pair [25], two pairs

[26] and three pairs [27] of inclined springs have been

proposed to expand the isolation capabilities. The

configurations with one and two pairs of oblique

springs have also proven effective in enhancing the

performance of vibration energy harvesters, as dis-

cussed in [28] and [29].

The majority of the previously mentioned studies

[6, 8, 10, 11, 15, 18–22, 24, 26, 27], primarily focused

on achieving classical quasi-zero stiffness (QZS)

force–deflection curves. This characteristic is valuable

for simultaneously providing high-static and low-

dynamic stiffness behaviour. It allows to carry a

payload with a low static deformation while exhibiting

a low natural frequency to enlarge the isolation region.

Other studies aimed to achieve a softening-harden-

ing stiffness nonlinearity using one pair of asymmet-

rically inclined springs [30], a tri-stable nonlinear

characteristic using two pairs of symmetric springs

[29], softening-zero-hardening stiffness characteris-

tics [31], sigmoidal-shaped force–displacement

curves [32], and even tailored [33] and adjusta-

ble [34, 35] stiffness characteristics.

Modelling damping is of crucial importance in this

kind of devices to predict a realistic dynamic

behaviour. In some of the studies dealing with nonlin-

ear oscillators exploiting combinations of linkages and

springs, damping has been simply modelled as a

translational linear viscous element [7–9, 19, 20, 36].

This assumption may hold when the amplitude of

oscillation is relatively small, allowing for the consid-

eration of an equivalent linear viscous damping term.

In other studies, due to the presence of hinges in the

coupling linkages, both translational and rotational

linear viscous damping effects have been considered

[6, 10–12, 15–17, 21–23], resulting in geometrical

nonlinear damping effects along the translational

motion direction.

In the most recent works focusing on nonlinear

geometrical arrangement of linear spring pairs only, a

linear viscous damping model has been considered

[26–28]. However, the assumption that strongly

nonlinear systems can be adequately represented by

an equivalent linear viscous damper may be unrealistic

when dealing with high-amplitude oscillations.

Although viscous damping may result as a reasonable

assumption in some cases [37, 38], dry friction can

also manifest, especially when joints and mating

linkages are adopted in a real prototype device.

Some attempts to model dry friction in nonlinear

oscillators consisting of linkages and/or springs can be

found in [39, 40], where models of nonlinear oscilla-

tors are presented with combination of viscous damp-

ing and dry friction. Recent experimental works on

Coulomb friction effects on the response of a linear

oscillator have been reported in [41, 42].

Recent investigations into nonlinear oscillators

employing pairs of inclined springs have not fully

considered dry friction in their models. This paper thus

contributes to advance the knowledge on the perfor-

mance of nonlinear mechanical oscillators subject to

large amplitude oscillations, where both strongly

nonlinear stiffness and damping must be accounted

for modelling. To validate the proposed model, a

prototype device was constructed and tested experi-

mentally, resulting in very-good agreement of the

measured data with the theoretical prediction of the

model.

Potential applications are foreseen in vibration

energy harvesters, vibration isolators, and vibration

absorbers, where having a softening elastic behaviour

under large displacements may be of interest.
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2 Modelling

2.1 System description, geometry, and static

analysis

The system considered in this work is a X-shaped

mechanical oscillator. A photo of the prototype device

and its virtual model are shown in Fig. 1a and b

respectively. Depending on its design parameters, this

system can achieve a variety of elastic behaviours,

encompassing linear, hardening, softening and QZS

characteristics [35, 43]. This paper introduces a design

approach that incorporates two symmetrical QZS

regions, thereby achieving a softening behaviour

under large-amplitude oscillations—the central objec-

tive of this work. Figure 1c and d, show the geomet-

rical model of the device in its static equilibrium

configuration and in an arbitrary displaced configura-

tion, respectively. Four equal oblique springs with free

length h0 and stiffness k are connected between an

oscillating mass, m, and a support structure. A one-

degree-of-freedom underlying mechanism is adopted

to constrain the oscillating mass relative displacement,

z, along the horizontal direction. The underlying

mechanism consists of one fixed bar constraining the

oscillating mass motion to the horizontal direction

only, and four oscillating bars used to guide spring

compression and limit spring buckling. These ele-

ments are labelled in Fig. 1a. Revolute and transla-

tional joints are adopted to assemble the bars to the

oscillating mass and the supporting structure. It is

worth noticing that the prototype device in Fig. 1a

employs two compression springs for each bar, to

ensure proper operation throughout the entire range of

motion of the sliding mass. Practically, the outer

springs come into place when the inner ones are no

longer under compression. In contrast, the schematic

representation only shows one spring per bar, working

both under compression and tension.

Due to symmetry, in the static equilibrium config-

uration for z ¼ 0, which is shaded in Fig. 1b, each of

the springs has the same assembled length, h, and the

same distance, l0, also holds between the centres of the

rotational joints for each spring assembly. The

parameters a and b define the springs inclination in

the static equilibrium configuration.

When the oscillating mass moves, each pair of

springs behaves differently. Figure 1b, shows the case

when the mass moves in the positive direction, i.e.

z[ 0, so that spring pair on the right assumes length

h1\h0, while the pin-pin distance assumes length

l1\l0: Conversely, the spring pair on the left assumes

length h2 [ h0, while the pin-pin distance assumes

length l2 [ l0.

The following relations hold for the model in Fig. 1

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� zð Þ2þb2
q

l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ zð Þ2þb2
q

h1 ¼h� l0 þ l1

h2 ¼h� l0 þ l2

l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

ð1a� eÞ

The expression of the elastic force, f e, as a function

of the mass relative displacement, z; can be deter-

mined by considering the parallel contribution of the

spring pair on the left and on the right, which yields

f e ¼ �2k
h1 � h0ð Þ a� zð Þ

l1
þ 2k

ðh2 � h0Þ aþ zð Þ
l2

ð2Þ

So that, substituting Eq. (1a–e) in Eq. (2) gives

f e ¼ �2k
a� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� zð Þ2 þ b2
q

2

6

4

h 1� rð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� zð Þ2 þ b2
q

� �

� aþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ zð Þ2 þ b2
q h 1� rð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ zð Þ2 þ b2
q

� �

3

7

5

ð3Þ

where the spring length factor, r ¼ h0=h, is intro-

duced, and represents the ratio of the free length of

each spring to its assembled length in the static

equilibrium configuration.

Depending on the different parameters in Eq. (3),

very different behaviours can be realised, in terms of

stiffness curve. Linear, hardening, softening, and

quasi-zero stiffness characteristics can be achieved.

The reader is directed to [43] for an insight.
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Fig. 1 X-shaped-spring system under study. Photo of the

prototype device in a. Virtual model in b in equilibrium

configuration (shaded) and in displaced configuration.

Geometrical model in the static equilibrium configuration in c,
and in an arbitrary displaced configuration in d
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2.2 Tailoring the force–displacement curve

to a sigmoidal characteristic

Among the different shapes of force–deflection char-

acteristics achievable with the spring configuration

shown in Fig. 1, the interest of this work is towards a

shape of the force–displacement characteristic with

positive stiffness at the static equilibrium configura-

tion and two symmetric QZS regions at larger

displacements, thus resembling a sigmoidal charac-

teristic. This is achieved by solving both the first and

second derivative of Eq. (3) (with respect to the

relative displacement z) set to zero in terms of z and b.

To limit the number of design parameters, it is

conveniently assumed that a ¼ b, and numerical

simulations are run for different combinations of h0
and h, which satisfy the mechanical implementation

and geometry of the structure. A suitable theoretical

solution gives the values of parameters listed in the

first row of Table 1. Note that zZSj j in Table 1, denotes

the value of displacement at which a theoretical zero-

stiffness is achieved. Comparing the theoretical solu-

tion for the spring parameters with a commercial

spring catalogue, it was possible to select the actual

values of parameters used for the prototype device,

which are listed in the second row of Table 1. Note

that in this case there is no value for zZSj j, as a true

theoretical zero-stiffness point is missing due to the

adoption of commercial springs with slightly different

parameter values than those mathematically required.

Figure 2a shows the theoretical characteristic with

zero-stiffness points and the actual characteristic due

to the adopted commercial springs. Figure 2b repre-

sents the device configuration (i.e., the oscillating

mass displacement) corresponding to the static char-

acteristic in Fig. 2a.

2.3 Lagrange modelling and effect of variable

inertia

The equation of motion of the system is determined

using a Lagrange approach [44] and considering all the

major moving components of the oscillator, i.e., the

oscillating mass and the spring bars, which incline as

the oscillating mass moves. Note that the oscillator is

mounted so that it oscillates in the horizontal direction,

thus the effect of gravity is neglected.

The kinetic energy of the system is obtained by

considering the movements of the oscillating mass and

of the four spring bars. The former is described by the

variable z, while the latter is a combination of the

displacement DGj of the centre of mass Gj and the

rotation cj of each bar (j ¼ 1; . . .; 4). The motion x

imposed to the frame in Fig. 1c,d is set to zero in this

section. The initial angle of each bar is denoted as cj0
and refers to the equilibrium position. The following

initial angles are set in this work: c10 ¼ c40 ¼ 45� and
c20 ¼ c30 ¼ 135�. A scheme of the motion of the first

spring bar is depicted in Fig. 3 as an example (see

Fig. 2b for the spring bars order).

The angle c1 can be easily obtained from the

following trigonometric relation

c1 ¼ tan�1 btanc10
b� ztanc10

� c10 ð4Þ

while the displacement DG1 can be calculated by

applying the cosine rule to the triangle G1AG
0
1 in

Fig. 3 and assuming that the position of the centre of

mass of the bar is known. The expressions of the

kinetic energy T and of the potential energy V read:

T ¼ Tm þ
X4

j¼1
TGj

þ
X4

j¼1
Tcj

¼ 1

2
m _z2 þ 1

2
mb

X4

j¼1
_D
2

Gj
þ 1

2
Ib
X4

j¼1
_c2j ð5aÞ

V ¼ 1

2
k
X4

j¼1
hj � h0
� �2 ð5bÞ

where mb and Ib are the mass and the moment of

inertia of a single spring bar. The effect of variable

inertia is studied by applying a constant-rate variation

of the relative displacement z from �0:03 m to

þ0:03 m and considering the system nominal charac-

teristics listed in Table 1. The values of c and DG for

the four spring bars are plotted in Fig. 4.

Table 1 Nominal

parameters
a
[m]

b
[m]

zZSj j
[m]

h
[m]

h0
[m]

r
[1]

l0
[m]

k
[N/m]

Theoretical solution 0.0214 0.0214 0.0206 0.0164 0.0254 1.545 0.0303 250

Practical solution 0.0214 0.0214 – 0.0143 0.0254 1.7794 0.0303 250
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The percentage contributions of the single compo-

nents to the kinetic energy T of the system (Eq. 5a) are

depicted in Fig. 5 as a function of z. The component

Tm associated with the movement of the mass m

accounts for approximately 96% of the total kinetic

energy of the system. Thus, it is a reasonable

approximation to neglect the contributions from the

other components in the dynamic model adopted in the

following sections.

It has been verified both numerically and analyti-

cally that the derivative of the potential energy of

Eq. (5b) with respect to the displacement variable z

gives exactly the elastic force of Eq. (2).

Fig. 2 a Sigmoidal

characteristic of the force–

deflection curve.

b Configuration of the

device corresponding to the

QZS region in a
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3 Experimental work

3.1 Prototype assembly

The device is excited with an electromagnetic shaker

(TIRA TV56280/LS-180) that exerts an acceleration €x

to the frame. Two monoaxial accelerometers (B&K

4507-B004) are used to measure the acceleration of

the shaker and the absolute acceleration of the

oscillating mass, €y. A photo of the experimental

assembly is shown in Fig. 6 and a video showing the

prototype in operating conditions is available in

Online Appendix A.

The relative acceleration of the moving mass is

described by the variable €z ¼ €y� €x, and the equation

of motion therefore reads:

Fig. 3 Motion of the centre of mass of spring bar 1

Fig. 4 Angle c in a and displacement DG in b as a function of

the relative displacement z. Continuous lines: spring bars 1, 4;

dashed-dotted lines: spring bars 2, 3

Fig. 5 Percentage components of the kinetic energy of the

system

Fig. 6 Photo of the experimental assembly

Fig. 7 Sweep tests. a Relative acceleration. b Relative dis-

placement. Black line: base amplitude of 10 mm. Grey line:

base amplitude of 9 mm
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m€zþ f e zð Þ þ f d z; _zð Þ ¼ �m€x ð6Þ

where f eðzÞ is the elastic force and f dðz; _zÞ is the

damping force. The latter is written as a function of

both displacement z and velocity _z, and it will be

derived from the experimental observations in the

following sections. Note that the inertia term contains

only the contribution of the moving mass, as already

discussed in Sect. 2.3.

3.2 Sweep tests and restoring force surface

Two different frequency sweep tests are conducted

with a linear rate of 0.1 Hz/s, from 9 down to 3 Hz

(sweep-down) and with a sampling frequency of

512 Hz, using two amplitude values. The base ampli-

tude of oscillations is controlled using LMS Tes-

tLabTM software and it is set to 10 mm for the first test

and 9 mm for the second. These values have been

selected to induce large displacements in the system

response without causing impacts or reaching physical

constraints. The measured relative acceleration €z is

plotted in Fig. 7a for both tests as a function of the

instantaneous frequency of the input signal. The

relative displacement z is obtained by double-integra-

tion of the corresponding acceleration signal €z and it is

depicted in Fig. 7b for both tests. Notice that the

maximum measured displacement in Fig. 7b is very

close to the characteristic dimensions a and b of the

device, as reported in Table 1.

From the measurements, it is observed how the

system response rapidly decreases around 5 Hz, which

is consistent with the softening behaviour that is

expected from the design specifications of device.

The restoring force R [45] of the system is defined

as

R ¼ f e zð Þ þ f d z; _zð Þ ¼ �m €xþ €zð Þ ¼ �m€y ð7Þ

The experimental restoring force surface is denoted

with eR and is depicted in Fig. 8 as a function of

displacement and velocity, considering both tests.

The Restoring Force Surface (RFS) method [45] is

applied to obtain an estimate of the elastic and

damping forces. In particular, an approximation of

the elastic force can be visualised by slicing the

restoring surface in the range of zero velocity, such

that _zj j\�v with �v user-selected tolerance. The result

is depicted in Fig. 9a with �v set to be 0.5% of max _zj j.
The softening behaviour of the elastic force, as

specified in Fig. 2a from the theory, is also observed

in Fig. 9a from the experiments, confirming the

expectations.

A similar approach is adopted for the damping

force. However, in this case the restoring surface is

sliced in the neighbourhood of several positions zk to

track the possible evolution of the damping force

along the movement of the oscillating mass. The

results are shown in Fig. 9b considering five equally

spaced positions such that z� zkj j\�d; k ¼ 1; . . .; 5
and �d set to be 0.5% of max zj j.

The sliding friction behaviour is generally observed

in Fig. 9b, as expected, but with two considerations:
Fig. 8 Experimental restoring force surface. Black dots: base

amplitude of 10 mm. Grey dots: base amplitude of 9 mm.

Projections to side walls are in blue

Fig. 9 a Experimental elastic force. b Experimental damping

force across five different positions of the moving mass

(- 16 mm, - 8 mm, 0 mm, ? 8 mm, ? 16 mm)
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1. The amplitude of the damping force is not constant

with respect to the position of the moving mass.

This can be explained by a non-constant normal

force acting along z due to the interaction of the

spring bars. A similar behaviour has been previ-

ously observed in [40, 46] due to the effect of the

two rods on a constraining bar. An accurate

damping model of the considered system should

therefore account for the position-dependent

nature of the friction force.

2. There exists a region of viscous-type behaviour

for small velocities. This can be clearly observed

in Fig. 9b. This effect can be incorporated into the

damping model by introducing a transition from

viscous (small velocities) to frictional behaviour,

for instance by employing a hyperbolic tangent

function [48].

A damping model that takes into account these two

observations is therefore considered in the following

section.

3.3 Fitting model to experiment

The experimental restoring force eR is fitted to the

model in Eq. (7), which is the sum of the elastic force

in Eq. (3) and of a proper damping force f d z; _zð Þ: In a

previous work [47] using the same prototype device, a

simple damping model was adopted. Based on the new

experimental evidence observed in the previous sec-

tion, the damping model proposed in this paper is

extended as follows:

f d z; _zð Þ ¼ l zð Þtanh 4 _z

vt zð Þ

� �

¼ l0 þ tanh l1zþ l2z
2

� �� �

tanh
4 _z

aþ bz2

� �

ð8Þ

Equation (8) is based on the continuous-velocity

friction model [48] with both amplitude and viscous-

region functions of the relative displacement z. The

amplitude lðzÞ is expressed as the sum of a constant

term l0 (in [N]) and a hyperbolic tangent function,

whose argument contains a quadratic function of the

relative displacement. The first-order term l1z
accounts for possible asymmetries in the damping

force. The use of the hyperbolic tangent function is to

saturate the force amplitude in case of model extrap-

olation outside the training data set, to make sure that

the system response does not diverge or become

unstable [49]. The viscous-transition region is ruled by

the velocity term vt zð Þ ¼ aþ bz2 that is a quadratic

function of zwith coefficients a (in [m/s]) and b (in [1/

(m�s)]). Note that b ¼ 0 returns a constant transition

velocity as in [48]. The whole damping model

captures therefore the amplitude-dependent sliding

friction behaviour with viscous-like transition at small

velocities, relying on five parameters ðl0; l1; l2; a; bÞ.
It does not consider other known frictional phenomena

such as time-lag, microslip, or dwell-time dependence

[50], which generally require more sophisticated

modelling approaches and dedicated experimental

investigations beyond the scope of this study.

As for the elastic model, the practical solution

values of Table 1 are considered as initial guesses.

Only the stiffness k and the initial spring length h0 are

included in the optimisation problem, since the other

dimensional parameters have been accurately mea-

sured before the experimental tests.

The following nonlinear least-squares minimisa-

tion problem is therefore set:

bh ¼ argminh eR � R hð Þ
	

	

	

	

	

	

	

	

2
subject to l� h� u ð9Þ

where h ¼ k; h0; l0; l1; l2; a; b½ �T is the vector of

parameters to be optimized, with l and u being the

lower and upper constraints, respectively. The neces-

sity of a constrained optimisation problem arises from

the need of obtaining a feasible solution in the space of

parameter dimensions. The trust-region method [51] is

adopted to solve the minimisation problem of Eq. (9),

and the result over the iterations is depicted in Fig. 10.

Optimised parameters are listed below in Table 2

and compared to the initial guess corresponding to the

nominal parameters. Note that the damping terms are

all initially set to zero.

Fig. 10 Norm of the residuals over the iterations (logarithmic

scale)

123

Experimental characterization of a nonlinear mechanical oscillator



The modelled restoring force R and the experimen-

tal one eR are plotted in Fig. 11 w.r.t. displacement and

velocity.

A more detailed representation is proposed in

Fig. 12, recalling the plots of Fig. 9. Figure 12a shows

the experimental (black) and modelled (cyan) elastic

forces, while Fig. 12b shows the experimental (black)

and modelled (cyan) damping forces at the same five

positions shown in Fig. 9.

The residual � ¼ eR � R is plotted in Fig. 13a-b in

time and frequency (PSD) domains. The proposed

model well captures the system behaviour, with a low

residual error. This is particularly evident in the

frequency region of the excitation (i.e., [3 7 9] Hz),

where the residual lies around 60 dB below the signal.

This is considered a satisfactory outcome, given the

manufacturing and assembling tolerances of the

device. The accuracy of the model can be visualised

in Fig. 13c, with a two-second zoomed view of the

experimental (black) and modelled (dashed-dotted

cyan) restoring forces: the two curves visually overlap.

To inspect the sensitivity of the damping force to its

parameters, a deeper investigation is proposed in

Fig. 14, where the parameters l0; l1; l2; a; b are

Table 2 Optimised

parameters
k
[Nm-1]

h0
[m]

l0
[N]

l1
[Nm-1]

103l2
[Nm-2]

a
[ms-1]

103b
[1/(ms)]

Initial value 250 0.026 0 0 0 0 0

Range 2007400 0.02270.030 075 - 50750 0710 071 075

Final value 308 0.028 1.60 25.31 3.35 0.08 1.17

Fig. 11 Experimental (black) and modelled (cyan) restoring

force surface. a 3D visualisation. b Force–displacement plot

with expected behaviour in dashed red line. c Force–velocity

plot

Fig. 12 a Experimental (black) and modelled (cyan) elastic

force. b Experimental (black) and modelled (cyan) damping

force across five different positions of the moving mass

(- 16 mm, - 8 mm, 0 mm, ? 8 mm, ? 16 mm)

Fig. 13 Restoring force in the time domain in a and c, and in

the frequency domain in b. Black line: experimental data.

Dashed-dotted red line in a and b: model residual. Dashed-

dotted cyan line in c: model output
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Fig. 14 Effect of parameters on the damping force. Cyan colour indicates the optimised parameters

Fig. 15 Experimental (black) and modelled (cyan) restoring

force surface of the validation set. a 3D visualisation. b Force–

displacement plot. c Force–velocity plot Fig. 16 Restoring force of the validation set in the time domain

in a and c, and in the frequency domain in b. Black line:

experimental data. Dashed-dotted red line in a and b: model

residual. Dashed-dotted cyan line in c: model output
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considered as [0.2, 0.6, 1, 1.4, 1.8] times of their final

values in Table 2. As expected, the amplitude l0 has
the greatest impact on the damping force. The

parameters a and b of viscous-transition region are

instead the least sensitive to variations in affecting the

model of the restoring force, and their effect is mainly

localised around the zero-velocity region. Neverthe-

less, they ensure that the low-velocity behaviour is

appropriately captured by the damping model.

3.4 Validation with random test

The optimised model is validated on a second data set

with a broadband random excitation in the frequency

range [2 7 20] Hz. The same experimental setup of

Sect. 3.1 is used, with a sampling frequency of 512 Hz

and data recorded for 60 s. The base amplitude of

oscillations in this case is 7 mm RMS. The experi-

mental restoring force and the model estimation are

visualised in Fig. 15, while the residual is plotted in

Fig. 16a and b in time and frequency (PSD) domains,

respectively. The system dynamics are successfully

captured also in this case, with the model residual

being an average of 48 dB lower than the signal in the

frequency range of the excitation. A two-second

zoomed view of the experimental (black) and mod-

elled (dashed-dotted cyan) restoring forces is also

depicted in Fig. 16c to visualise the model’s predic-

tion accuracy. The two curves well overlap also in this

case.

4 Conclusions

This work has investigated the static and dynamic

characteristics of a nonlinear suspension with two

pairs of inclined linear springs arranged in an

X-shaped configuration. A relationship among the

system parameters has been found resulting in a

softening force–displacement characteristic, with two

symmetric quasi-zero stiffness points far away from

the static equilibrium configuration. Such a relation

results in the free length of the springs being linked to

their assembled length.

A prototype device was built and tested for

experimental validation of the theoretical model.

Frequency sweep excitations were used to collect data

and the Restoring Force Surface method was used to

identify the best estimate of the system parameters to

fit the experimental data. A second set of experimental

data, with a broadband excitation, was used to validate

the model. The final residuals of the testing and

validation sets were approximately 60 dB and 48 dB

lower than the measurements, respectively. This is

considered to be very satisfactory, given the relatively

large tolerances in manufacturing and assembling the

prototype device. Dry-friction and viscous-damping

models were adopted, and the theoretical force–

displacement characteristic was inferred from the

geometric configuration of the device.

Other dynamic models proposed in the recent

literature for this class of X-shaped-spring oscillators

rely on a linear viscous damping model for small

displacement. The work presented in this paper shows

that a more complex damping model is needed to fit

experimental results for large amplitude motion. In the

experiments, the oscillating mass of the proposed

oscillator moved up to an amplitude of about 18 mm

both in frequency sweep and random tests. This is

comparable with the characteristic dimension of the

device, which is about 2 cm, and thus represents a

relatively large motion.

This paper advances the knowledge on the charac-

teristics of X-shaped-spring nonlinear elastic suspen-

sions with softening characteristics and for large

displacement range. From a practical engineering

point of view, potential applications of the device are

foreseen in the field of vibration isolation, vibration

absorption, and vibration energy harvesting.
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