This paper focuses on the generation of a compact and accurate model of the eye aperture for a differential textile interconnect. The considered eye metric is computed through a simple and effective procedure based on a polygonal approximation of the clean inner eye area. Least squares support vector machine regression is used, yielding a fast and accurate surrogate model of the link, providing a quantitative information of the data communication quality. The generated model turns out to be a parametric description which is used in the framework of stochastic analysis and uncertainty quantification, allowing to take into account the effects of the variation of the electrical and geometrical parameters of the link. The accuracy and convergence of the proposed machine learning solution are thoroughly discussed.

Surrogate Eye Modeling for the Statistical Assessment of a Smart Textile Interconnect / Telescu, Mihai; Trinchero, Riccardo; Tanguy, Noel; Stievano, Igor S.. - ELETTRONICO. - (2023). (Intervento presentato al convegno SPI 2023 - 27th IEEE Workshop on Signal and Power Integrity tenutosi a Aveiro, Portugal nel May 7-10, 2023) [10.1109/spi57109.2023.10145573].

Surrogate Eye Modeling for the Statistical Assessment of a Smart Textile Interconnect

Trinchero, Riccardo;Stievano, Igor S.
2023

Abstract

This paper focuses on the generation of a compact and accurate model of the eye aperture for a differential textile interconnect. The considered eye metric is computed through a simple and effective procedure based on a polygonal approximation of the clean inner eye area. Least squares support vector machine regression is used, yielding a fast and accurate surrogate model of the link, providing a quantitative information of the data communication quality. The generated model turns out to be a parametric description which is used in the framework of stochastic analysis and uncertainty quantification, allowing to take into account the effects of the variation of the electrical and geometrical parameters of the link. The accuracy and convergence of the proposed machine learning solution are thoroughly discussed.
File in questo prodotto:
File Dimensione Formato  
cnf-2023-spi-stkeye-author.pdf

accesso aperto

Descrizione: cnf-2023-spi-stkeye-author
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 602.02 kB
Formato Adobe PDF
602.02 kB Adobe PDF Visualizza/Apri
cnf-2023-spi-stkeye-ieee.pdf

non disponibili

Descrizione: cnf-2023-spi-stkeye-ieee
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2987019