The existence of minimizers of the Canham–Helfrich functional in the setting of generalized Gauss graphs is proved. As a first step, the Canham–Helfrich functional, usually defined on regular surfaces, is extended to generalized Gauss graphs, then lower semicontinuity and compactness are proved under a suitable condition on the bending constants ensuring coerciveness; the minimization follows by the direct methods of the Calculus of Variations. Remarks on the regularity of minimizers and on the behavior of the functional in case there is lack of coerciveness are presented.

Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs / Kubin, Anna; Lussardi, Luca; Morandotti, Marco. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 34:5(2024), pp. 1-25. [10.1007/s12220-024-01564-2]

Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs

Kubin, Anna;Lussardi, Luca;Morandotti, Marco
2024

Abstract

The existence of minimizers of the Canham–Helfrich functional in the setting of generalized Gauss graphs is proved. As a first step, the Canham–Helfrich functional, usually defined on regular surfaces, is extended to generalized Gauss graphs, then lower semicontinuity and compactness are proved under a suitable condition on the bending constants ensuring coerciveness; the minimization follows by the direct methods of the Calculus of Variations. Remarks on the regularity of minimizers and on the behavior of the functional in case there is lack of coerciveness are presented.
File in questo prodotto:
File Dimensione Formato  
J_GEOM_ANAL_2024.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 441.33 kB
Formato Adobe PDF
441.33 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986737