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Abstract
The existence of minimizers of the Canham–Helfrich functional in the setting of
generalized Gauss graphs is proved. As a first step, the Canham–Helfrich functional,
usually definedon regular surfaces, is extended to generalizedGauss graphs, then lower
semicontinuity and compactness are proved under a suitable condition on the bending
constants ensuring coerciveness; theminimization follows by the direct methods of the
Calculus of Variations. Remarks on the regularity of minimizers and on the behavior
of the functional in case there is lack of coerciveness are presented.

Keywords Canham–Helfrich functional · Generalized Gauss graphs · Energy
minimization

Mathematics Subject Classification 49Q20 · 49J45 · 92C10 · 49Q10 · 53C80

1 Introduction

The mathematical modeling of biological membranes is an active field of research that
has received much attention in the last half century starting with the pioneering works
of Canham [5] and Helfrich [17]. They modeled the membranes as regular surfaces in
the space and associate the equilibrium configurations with the minimum of an energy
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functional depending on the curvatures. If we denote by M ⊆ R
3 a two-dimensional,

compact, and oriented submanifold (with an understood choice of the normal vector
ν : M → S

2), by H and K its mean and Gaussian curvatures, respectively, and by H0
a constant spontaneous curvature, the so-called Canham–Helfrich energy functional
reads

E(M) :=
∫

M

(
αH (H(p) − H0)

2 − αK K (p)
)
dH2(p), (1.1)

where H2 is the 2-dimensional Hausdorff measure and αH , αK > 0 are the bending
constants. These are physical, model-specific, constants and the range of possible val-
ues that they can take reveals to be crucial to determine the coercivity of the functional.
We point out that the positivity of the constants and the minus sign between the two
terms in the energy give competition between the two curvatures in (1.1).

In the smooth case where M is at least of class C2, the curvatures H and K are
given by the usual formulae

H = κ1 + κ2 and K = κ1κ2,

κi being the principal curvatures, with respect to which, when H0 = 0, the functional
E is homogeneous of degree two.

If M is without boundary, one can invoke the Gauss–Bonnet theorem and obtain
that the term involving K gives a constant contribution (determined by the Euler
characteristic χ(M) of M) to the energy, so that it can be neglected in view of the
minimization of E among all surfaces with prescribed topology. In this case, and under
the further constraint that the spontaneous curvature vanishes, the functional E reduces
to the well known Willmore energy functional [24, 33, 37, 40, 42]

W(M) :=
∫

M
H2(p) dH2(p). (1.2)

Both functionals E and W are geometric in nature, since they depend on geomet-
ric features of the surface M , and can be studied in a number of different contexts,
according to the regularity requests on M . Sobolev-type approaches to the minimiza-
tion either of the Willmore functional (see [24] and the references therein, see also
[21, 22, 29, 34]) or of the Canham–Helfrich functional (see, e.g., [6, 7, 18, 19, 26,
28, 43]) assume that M has fixed topology, or even symmetry constraints. Aiming
at considering more general surfaces, a successful approach is the one through vari-
folds [20, 44], see [4, 13, 14]. We point out that other frameworks are available in the
study of geometric functionals: for instance, currents [16] have been used to tackle
the minimization of the area functional. Despite not being suitable for the formulation
of problems involving curvatures, due to their lack of an intrinsic notion of curvature,
special classes of currents have been introduced to overcome this issue. Nonetheless,
it is possible to apply the technical tools of the theory of currents to the class of the
so-called generalized Gauss graphs [1], which are motivated by a generalization of
the graph of the Gauss map on smooth surfaces M . Instead of generalizing M itself,
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this approach has the remarkable advantage to allow one to exploit the fact that the
curvatures of M are coded in its Gauss map, see Sect. 2 for details.

We point out that the typical form in which the functional E in (1.1) is found in the
literature is

E(M) :=
∫

M

(aH

2
(H(p) − H0)

2 + aK K (p)
)
dH2(p), (1.3)

under the condition that aH > 0 and aK < 0 to ensure the competition between the
two curvatures. In this context, it is required that

aH > 0 and
aK

aH
∈ (−2, 0) (1.4)

in order to ensure both the coercivity and the lower semicontinuity of the functional
(1.3); this condition is the same assumed in [7, Theorem 1] and [6, formula (1.9)] in
the Sobolev setting, see also [18, 19], whereas the more restrictive condition −6aH <

5aK < 0 is considered in [4] in the varifold setting. We note that the typical physical
range of the parameters is −aH ≤ aK ≤ 0, see, e.g., [2, 3, 41],1 the case aK = 0
essentially reducing to the Willmore functional W of (1.2). Given the expression of
the Canham–Helfrich functional E in (1.1), condition (1.4) reads

4αH > αK > 0. (1.5)

In this paper, we provide a suitable formulation of the Canham–Helfrich functional
E introduced in (1.1) in the class of generalized Gauss graphs and study three mini-
mization problems. Our main results are Theorems 4.5, 4.6, and 4.9 stating that, under
condition (1.5), there exists a minimizer of the Canham–Helfrich functional in certain
classes of generalized Gauss graphs, also enforcing area and enclosed volume con-
straints, the latter being the physically relevant setup for biological applications. Their
proof is a consequence of the direct method in the Calculus of Variations, once lower
semicontinuity and compactness are proved.

The main advantage of the generalized Gauss graphs setting is that we are able
to cover the physical range (1.5) for the bending coefficients. One shortcoming is
the need of technical conditions to define the classes where the functional is mini-
mized. Nonetheless, regular two-dimensional oriented surfaces always belong to such
minimization classes.

The plan of the paper is the following: in Sect. 2we present a brief review of general-
izedGauss graphs, after whichwe define theCanham–Helfrich energy of a generalized
Gauss graph in Sect. 3. Section4 is devoted to the main results, Theorems 4.5, 4.6,
and 4.9, and is complemented by a regularity result, Theorem 4.12.

1 Note that [2] cites [41], but inverting numerator and denominator, by mistake.
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1.1 Motivations from Biological Membranes and Outlook

In this section we briefly describe the origin of the Canham–Helfrich functional E in
(1.1) and present an outlook for future research.

In the early 1970s Canham and Helfrich independently proposed a free energy in
an effort to model the shape of biological membranes. The lipid bilayer that usually
constitutes biological membranes is composed of amphiphiles, polar molecules fea-
turing a hydrophilic head and a hydrophobic fatty tail, that are arranged in a fashion
so that the tails in the inner part of the bilayer, screened from the watery surrounding
environment.

Given the thickness of a few nanometers, one such bilayer can be effectively
described as a surface M and the form (1.1) of the energy depending only on the
mean curvature H of M responds to the need of explaining the bi-concave shape of
red blood cells [5]. The competing contribution coming from theGaussian curvature K
was added by Helfrich [17], whereas the presence of the spontaneous mean curvature
H0 takes into account possibly preferred configurations: this is the case in which the
asymmetry between the two layers, or the difference in the chemical potential across
the membrane determine a natural bending of the membrane, even at rest.

Several derivation for the Canham–Helfrich energy (1.1) are available, see [38]
and the references therein, which rely on formal expansions of microscopic energies
for small thickness. A more rigorous derivation in terms of �-convergence would
be amenable from the variational point of view. Some results in this direction are
available. In [31] a complete derivation in dimension two is presented, while the full
three-dimensional case is tackled in [25, 26], where only partial results are obtained:
the � − lim sup inequality is proved, but the � − lim inf inequality is proved in the
setting of generalized Gauss graphs for a simplified functional. It would be interesting
to recover a full �-convergence result also in the three-dimensional case. This work
sets the stage for possibly tackling this problem in the context of generalized Gauss
graphs, especially in light of the sharpness of the bounds on the bending constants.

2 Brief Theory of Generalized Gauss Graphs

In this section we introduce generalized Gauss graphs and highlight their main prop-
erties. We start by introducing some notions from exterior algebra and rectifiable
currents.

2.1 Exterior Algebra and Rectifiable Currents

We refer the reader to [15] for a comprehensive treatise on the theory of currents.
Let k, N ∈ N be such that 1 ≤ k ≤ N . We define

∧0
(RN ) := R and we denote

by
∧k

(RN ) the space of k-covectors in R
N , that is the space of k-linear alternating

forms onRN ; we denote by
∧

k(R
N ) the dual space (

∧k
(RN ))∗ = ∧k

((RN )∗), called
the space of k-vectors in R

N . We recall that, if {e1, . . . , eN } is a basis of RN , then
{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ N } is a basis of ∧k(R

N ), where ∧ denotes
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the exterior product. A k-vector v is called a simple k-vector if it can be written as
v = v1 ∧ · · · ∧ vk , for some v1, . . . , vk ∈ ∧1(R

N ) � R
N .

Let � ⊆ R
N be an open set. A (differential) k-form ω on � is a map that to each

x ∈ � associates ω(x) ∈ ∧k
(RN ). Given ω a 0-form on � (that is, a scalar function

ω : � → R), we define dω as the 1-form on � given by the differential of ω; for
k > 0, the definition of the exterior differential operator d is extended from k-forms
to (k+1)-forms through the usual algebra of the exterior product.We denote byDk(�)

the space of k-forms with compact support in �; the space of k-currents Dk(�) is
defined as the dual of Dk(�). Given a sequence of currents {Tn}n∈N ⊆ Dk(�) and
a current T ∈ Dk(�), we say that Tn⇀T if and only if 〈Tn, ω〉 → 〈T , ω〉 for every
ω ∈ Dk(�), where 〈·, ·〉 denotes the dual product. We denote by ∂T ∈ Dk−1(�)

the boundary of the current T ∈ Dk(�), defined as 〈∂T , ω〉 := 〈T , dω〉 for every
ω ∈ Dk−1(�); we notice that dω ∈ Dk(�) whenever ω ∈ Dk−1(�), that is, exterior
differentiation preserves the compactness of the support, so that the duality 〈∂T , ω〉 is
well defined. The mass of a current T ∈ Dk(�) in the open set W ⊆ � is defined as

MW (T ) := sup
{〈T , ω〉 : ω ∈ Dk(W ), ‖ω(x)‖ ≤ 1 for every x ∈ W

}
.

Here, ‖ · ‖ denotes the comass norm, namely, for α ∈ ∧k
(RN ),

‖α‖ := sup{〈α, v〉 : v is a simple k − vector with |v| ≤ 1
}
,

where |v| := |v1∧· · ·∧vk | is the volume of the parallelepiped generated by v1, . . . , vk .
Given a set M ⊆ R

N , we say that M is k-rectifiable if M ⊆ ⋃∞
m=0 Mi , for a

certain Hk-negligible subset M0 ⊆ R
N and for certain k-dimensional C1 surfaces

Mi ⊆ R
N , for i > 0. One can prove that, if M is a k-rectifiable set, for Hk-almost

every p ∈ M there exists an approximate tangent space denoted by Tp M . We say that
a map η : M → ∧

k(R
N ) is an orientation of M if it isHk-measurable and if η(p) is

a unit simple k-vector that spans the approximate tangent space Tp M for Hk-almost
every p ∈ M . We say that a map β : M → R is an integer multiplicity on M if it isHk-
locally summable and with values in N. Finally, T ∈ Dk(�) is a k-rectifiable current
with integer multiplicity if there exist a k-rectifiable set M ⊆ R

N , an orientation η of
M , and an integer multiplicity β on M such that for every ω ∈ Dk(�) we have

〈T , ω〉 =
∫

M
〈ω(p), η(p)〉β(p) dHk(p).

We denote byRk(�) the sets of such currents and write T = �M, η, β�. In this case,
we have that

MW (T ) =
∫

M∩W
β(p) dHk(p), (2.1)

which simply returns Hk(M ∩ W ) if the multiplicity β is 1.
We now state the celebrated Federer–Fleming compactness theorem, which estab-

lishes the compactness result for k-rectifiable currents with integer multiplicity.
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Theorem 2.1 [15, Theorem 4.2.17] Let {Tn}n∈N be a sequence in Rk(�) such that
∂Tn ∈ Rk−1(�) for any n ∈ N. Assume that for any open set W with compact closure
in � there exists a constant cW > 0 such that

MW (Tn) + MW (∂Tn) < cW .

Then there exist a subsequence {n j } j∈N and a current T ∈ Rk(�) with ∂T ∈ Rk−1(�)

such that Tn j ⇀T as j → ∞.

2.2 Gauss Graphs

We refer the reader to [11, 12] for the classical notions of differential geometry.
Let M ⊆ R

3 be a compact two-dimensional manifold of class C2; we say that M
is orientable if there exists a map ν : M → S

2 of class C1 on M such that, for every
p ∈ M , the vector ν(p) is perpendicular to the tangent space Tp M . Once we fix a
choice of such amap ν, we say that the manifold M is oriented and we call ν theGauss
map of M . Since M is of class C2, the Gauss map is differentiable at any p ∈ M and,
upon identifying Tν(p)S

2 � Tp M , its differential in p, dνp : Tp M → Tν(p)S
2, is a

self-adjoint linear operator that has two real eigenvalues κ1(p) and κ2(p), called the
principal curvatures of M at p. We define the mean and Gaussian curvatures of M at
p by

H(p) := κ1(p) + κ2(p), K (p) := κ1(p)κ2(p).

The map dνp can be extended to a linear map L p : R3 → R
3 by setting

L p := dνp ◦ Pp, (2.2)

where Pp : R3 → Tp M denotes the orthogonal projection on the tangent space.
Observe that L p has eigenvalues κ1(p), κ2(p), and 0; in particular, det L p = 0.

For convenience, we denote byR3
x the space of points p and byR3

y the space where
ν(p) takes its values, and we consider the graph of the Gauss map

G := {
(p, ν(p)) ∈ R

3
x × R

3
y : p ∈ M

} ⊂ R
3
x × R

3
y � R

6. (2.3)

Since M is a two-dimensional manifold of class C2, G is a two-dimensional embedded
surface in R

3
x × R

3
y of class C1. We remark that if M has a boundary then also G has

a boundary which is given by ∂G = {
(p, ν(p)) : p ∈ ∂ M

}
and we notice that if

∂ M = ∅ then ∂G = ∅.
We now define an orientation on G. We equip M with the orientation induced by ν

and let τ(p) := ∗ν(p), where

∗: ∧1(R
3) → ∧

2(R
3)

is the Hodge operator. Notice that τ(p) ∈ ∧2(Tp M) for every p ∈ M , thus the field
p �→ τ(p) is a tangent 2-vector field on M . Then, the action of the Hodge operator is
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that of, starting from ν(p), providing the oriented basis vectors of the tangent plane to
M at p, namely τ(p). Let� : M → M×S

2 ⊆ R
3
x ×R

3
y be given by�(p) := (p, ν(p))

which is of class C1 on M . Observe that G = �(M). For each p ∈ M we have

d�p : Tp M → Tp M × Tν(p)S
2 ⊆ R

3
x × R

3
y

u �→ (u, dνp(u)).

Finally, we define ξ : G → ∧
2(R

3
x × R

3
y) as

ξ(p, ν(p)) := d�p(τ1(p)) ∧ d�p(τ2(p)), for τ = τ1 ∧ τ2. (2.4)

It is easy to see that |ξ | ≥ 1, hence we can normalize ξ obtaining

η := ξ

|ξ | , (2.5)

which is an orientation of G.
We now introduce the general setting of generalized Gauss graphs. Let {e1, e2, e3}

and {ε1, ε2, ε3} be the canonical basis of R3
x and R

3
y , respectively. Given a 2-vector

ξ ∈ ∧2(R
3
x × R

3
y), we define the stratification of ξ as the unique decomposition

ξ = ξ0 + ξ1 + ξ2, where ξ0 ∈ ∧2(R
3
x ), ξ1 ∈ ∧1(R

3
x ) ∧∧1(R

3
y), ξ2 ∈ ∧2(R

3
y),

given by

ξ0 =
∑

1≤i< j≤3

〈dxi ∧ dx j , ξ 〉ei ∧ e j =:
∑

1≤i< j≤3

ξ
i j
0 ei ∧ e j ,

ξ1 =
∑

1≤i, j≤3

〈dxi ∧ dy j , ξ 〉ei ∧ ε j =:
∑

1≤i, j≤3

ξ
i j
1 ei ∧ ε j ,

ξ2 =
∑

1≤i< j≤3

〈dyi ∧ dy j , ξ 〉εi ∧ ε j =:
∑

1≤i< j≤3

ξ
i j
2 εi ∧ ε j ,

where {dx1, dx2, dx3} and {dy1, dy2, dy3} denote the dual basis of {e1, e2, e3} and
{ε1, ε2, ε3}, respectively. Notice that the three equalities above serve as a definition of
ξ

i j
h ; ξ0 and ξ2 are represented by 3×3 skew-symmetricmatriceswhile ξ1 is represented
by a 3 × 3 matrix.

From now on we take � ⊆ R
3
x an open set. We indicate by curv2(�) the set of the

currents � = �G, η, β� that satisfy

⎧⎪⎪⎨
⎪⎪⎩

� and ∂� are rectifiable currents supported on � × S
2,

〈�, gϕ∗〉=
∫

G
g(x, y)|η0(x, y)|β(x, y) dH2(x, y), for all g ∈ Cc(� × R

3
y),

〈∂�, ϕ ∧ ω〉 = 0, for all ω ∈ D0(� × R
3
y),

(2.6)
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where

ϕ(x, y) :=
3∑

j=1

y jdx j , ϕ∗(x, y) :=
3∑

j=1

(−1) j+1y jdx̂ j

and dx̂ j = dx j1 ∧ dx j2 for 1 ≤ j1 < j2 ≤ 3, j1, j2 �= j . We can associate with the
regular Gauss graph G the current �G ∈ R2(R

3
x × R

3
y) given by �G := �G, η, 1�,

and this turns out to be an element of curv2(�) (see [1, Section 2])2. Given � =
�G, η, β� ∈ curv2(�), we let G∗ := {(x, y) ∈ G : η0(x, y) �= 0} (notice that G∗ is
defined only H2-a.e.).

The geometric meaning of the first condition in (2.6) is evident; the one of the
second condition is the following: the variable y is orthogonal to the tangent space to
p1G, where we denote by p1 : R3

x ×R
3
y → R

3
x the projection on the first component;

the third condition is the analogue of the second one, on the boundary ∂�.
For a rectifiable current � = �G, η, β�, according with the stratification of η, we

define the strata �i by

�i (ω) :=
∫

G
〈ω(x, y), ηi (x, y)〉β(x, y) dH2(x, y)

for every ω ∈ D2(R3
x × R

3
y). Given k ∈ {1, 2, 3}, consider a multi-index λ ∈

{(λ1, . . . , λk) : 0 ≤ λ1 < · · · < λk ≤ 2}. Letting |�λi | be themeasure |ηλi |βH2 G,
a generalized Gauss graph � ∈ curv2(�) is said to be λ-special if

|�λi | � |�0| for i = 1, . . . , k

and we write � ∈ curvλ
2(�). We set curv∗

2(�) := curv(0,1,2)
2 (�) and we call its

elements special generalized Gauss graphs; in the sequel, we will also make use of
the space

curv(0,1)
2 (�) = {

� ∈ curv2(�) : |�1| � |�0|
}
.

We introduce the following class of functions.

Definition 2.2 A function f : � × R
3
y × (∧

1(R
3
x ) ∧ ∧1(R

3
y)
) → R is said to be a

standard integrand in the setting of curv2(�) if

(i) f is continuous;

2 We notice that the smallest weakly sequentially closed subset of

{T ∈ D2(� × R
3
y) : MW (T ) + MW (∂T ) < ∞ ∀W � � × R

3}

containing the currents associated with the regular Gauss graphs is a subset of curv2(�) (see again [1,
Sec. 2]). This shows that curv2(�) is a rich enough set.
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(ii) f is convex in the last variable, i.e.,

f (x, y, tp + (1 − t)q) ≤ t f (x, y, p) + (1 − t) f (x, y, q),

for all t ∈ (0, 1), for all (x, y) ∈ � × R
3
y , and for all p, q ∈ ∧1(R

3
x ) ∧∧1(R

3
y);

(iii) f has superlinear growth in the last variable, i.e., there exists a continuous function
ϕ : � × R

3
y × [0,+∞) → [0,+∞), non-decreasing in the last variable and such

that ϕ(x, y, t) → +∞ locally uniformly in (x, y) as t → +∞, and with

ϕ(x, y, |q|)|q| ≤ f (x, y, q)

for all (x, y, q) ∈ � × R
3
y × (∧1(R

3
x ) ∧∧1(R

3
y)
)
.

Remark 2.3 A function f as in Definition 2.2 is called (1)-standard integrand in [10,
Definition 3.3].

The following theorem ensures that an integral functional with a standard integrand
as a density is lower semicontinuous.

Theorem 2.4 [10, Theorem 3.2] Let f be a standard integrand in the setting of
curv2(�) and, for every � = �G, η, β� ∈ curv2(�), set

I f (�) :=
∫

G∗
f (x, y, ξ1(x, y))|η0(x, y)|β(x, y) dH2(x, y).

Consider a sequence {� j } j∈N ⊂ curv(0,1)
2 (�) such that

(i) � j⇀�, where � ∈ R2(� × S
2);

(ii) sup j∈N I f (� j ) < +∞.

Then

� ∈ curv(0,1)
2 (�) and I f (�) ≤ lim inf

j→∞ I f (� j ).

Theorem 2.5 [9, Corollary 4.2] Consider a sequence � j = �G j , η j , β j � ∈ curv∗
2(�)

such that

sup
j∈N

{∫
G∗

j

(
|(η j )0(x, y)| + |(η j )1(x, y)|2

|(η j )0(x, y)| + |(η j )2(x, y)|2
|(η j )0(x, y)|

)
β j (x, y) dH2(x, y) + M(∂� j )

}

< +∞.

Then there exist a subsequence {� jk }k∈N and � ∈ curv∗
2(�) such that � jk ⇀� as

k → ∞.
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3 The Canham–Helfrich Energy of a Generalized Gauss Graph

In this section, we are going to define the Canham–Helfrich energy of a generalized
Gauss graph in a way that is the natural extension of the definition for smooth surfaces.
Let H0 ∈ R.Here, M ⊆ R

3 denotes a compact andoriented (with anunderstood choice
of the normal ν) two-dimensional manifold of class C2; recall the definition (1.1) of
the Canham–Helfrich energy functional E(M) on M .

Lemma 3.1 [[26, Lemma 4.2]] For ξ ∈ ∧2(R
3
x × R

3
y) as in (2.4) the following hold

true

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ0 = τ1 ∧ τ2,

ξ1 = τ1 ∧ dν(τ2) − τ2 ∧ dν(τ1),

ξ
i j
1 = (τ1 ⊗ dν(τ2) − τ2 ⊗ dν(τ1))i j ,

ξ2 = dν(τ1) ∧ dν(τ2) = κ1κ2τ1 ∧ τ2.

(3.1)

Proof By the definition of ξ we have

ξ(p, ν(p)) = (τ1(p), dνp(τ1(p))) ∧ (τ2(p), dνp(τ2(p)))

= τ1 ∧ τ2 + τ1 ∧ dνp(τ2) − τ2 ∧ dνp(τ1) + dνp(τ1) ∧ dνp(τ2).
(3.2)

Then the equalities follow from straightforward computations. ��

Remark 3.2 If M is a two-dimensional oriented manifold of class C2 with multiplicity
β̄ : M → N, G is the Gauss graph associated with M via (2.3), and �G := �G, η, β�
with β(x, y) = β̄(x), then the equalities

M(M) =
∫

M
β̄(p) dH2(p) =

∫
G

β(x, y)

|ξ(x, y)| dH
2(x, y)

=
∫

G
|η0(x, y)|β(x, y) dH2(x, y)

(3.3)

hold true by means of the area formula, (2.5), and the first identity in (3.1); here, by
M(M) we mean the mass of the current �M, ν, β̄�, see (2.1) with k = 2. In particular,
if β̄ ≡ 1, we obtain

H2(M) =
∫

G
|η0(x, y)| dH2(x, y). (3.4)

The next two lemmas are proved in [26]. We provide the proof in our context for
the sake of completeness.

Lemma 3.3 [26, Lemma 4.5] Let � = �G, η, β� ∈ curv2(�) be a generalized Gauss
graph. Then
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• for H2-almost every (x, y) ∈ G

3∑
i=1

η
i j
1 (x, y)yi = 0 for all 1 ≤ j ≤ 3, (3.5)

• for H2-almost every (x, y) ∈ G∗

3∑
j=1

η
i j
1 (x, y)y j = 0 for all 1 ≤ i ≤ 3. (3.6)

Proof As in the proof of [1, Proposition 2.4], we have that

〈η(x, y), (y, 0) ∧ (0, w)〉 = 0 for all w ∈ R
3 and forH2 − almost every (x, y) ∈ G.

From this we deduce that
∑

i j η
i j
1 (x, y)yiw j = 0 for all w ∈ R

3, which implies (3.5).

By [1, Theorem 2.10(ii)], forH2-almost every (x, y) ∈ G∗, there are an embedded
C1-surface S ⊂ R

3 and a map ζ : S → S
2 of class C1 such that

ζ(x) = y,
∧

2(I⊕dζx )(∗y) = ξ(x, y).

By Lemma 3.1, we obtain, for i = 1, 2, 3 and ∗y = τ1 ∧ τ2,

3∑
j=1

ξ
i j
1 y j = ei · (τ1 ⊗ Dζ(x)τ2 − τ2 ⊗ Dζ(x)τ1)y = 0,

since Dζ(x)τk · y = Dζ(x)τk · ζ(x) = 0 for k = 1, 2 as ζ takes values in S
2. Then

(3.6) is proved recalling (2.5). ��
We recall that the permutation symbols are given by

εi jk =

⎧⎪⎨
⎪⎩
1 if (i jk) is an even permutation of {1, 2, 3},
−1 if (i jk) is an odd permutation of {1, 2, 3},
0 otherwise.

For any z ∈ R
3, we define

�z :=
3∑

i, j,k=1

εi jk zk dxi ∧ dy j . (3.7)

Lemma 3.4 [26, Lemma 4.6] For L as in (2.2), the following formulas hold

H = tr L = ν1(ξ
23
1 − ξ321 ) − ν2(ξ

13
1 − ξ311 ) + ν3(ξ

12
1 − ξ211 ) = 〈�ν, ξ1〉,

K = tr(cof L) = ν · (cof ξ1)ν,
(3.8)
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where L and ν are evaluated at p ∈ M and ξ is evaluated at (p, ν(p)).

Proof Since {τ1, τ2, ν} is an orthonormal basis of R3, we observe that for any r ∈ R

−r tr(cof L) + r2 tr L − r3 = det(L − r I) = det(τ1|τ2|ν) det(L − r I)

= (L − r I)ν · [(L − r I)τ1 × (L − r I)τ2] (3.9)

= −r(Lτ1 × Lτ2) · ν + r2(τ1 × Lτ2 − τ2 × Lτ1) · ν − r3,

where we used the fact that Lν = 0. Therefore, from Lemma 3.1 we deduce that

tr L = (τ1 × Lτ2 − τ2 × Lτ1) · ν =
3∑

i, j,k=1

(τ1,i e j · Lτ2 − τ2,i e j · Lτ1)νkεi jk

=
3∑

i, j,k=1

ξ
i j
1 νkεi jk =

∑
i< j

3∑
k=1

(ξ
i j
1 − ξ

j i
1 )νkεi jk

= ν1(ξ
23
1 − ξ321 ) − ν2(ξ

13
1 − ξ311 ) + ν3(ξ

12
1 − ξ211 ).

Moreover, from (3.1) and (3.9) we also deduce that

tr(cof L) = (Lτ1 × Lτ2) · ν = (Lτ1 ∧ Lτ2) · ξ0 = κ1κ2.

Using (3.1) again and, since det(ξ1) = 0, by [39, Prop. 3.21], we have

ν · cof(ξ1)ν = ν · cof(τ1 ⊗ Lτ2 − τ2 ⊗ Lτ1)ν = det(τ1 ⊗ Lτ2 − τ2 ⊗ Lτ1 + ν ⊗ ν) =: D.

We can represent the matrix τ1 ⊗ Lτ2 − τ2 ⊗ Lτ1 + ν ⊗ ν with respect to the basis
{τ1, τ2, ν}, obtaining

D = det

⎛
⎝ Lτ2 · τ1 Lτ2 · τ2 0

−Lτ1 · τ1 −Lτ1 · τ2 0
0 0 1

⎞
⎠ = det

(
Lτ1 · τ1 Lτ1 · τ2
Lτ2 · τ1 Lτ2 · τ2

)

= κ1κ2 det

(
τ1 · τ1 τ1 · τ2
τ2 · τ1 τ2 · τ2

)
= κ1κ2 = tr cof L,

which concludes the proof. ��
The next proposition provides the expression of the Canham–Helfrich functional

defined on manifolds, seen as regular Gauss graphs. In turns, this suggests how to
define the Canham–Helfrich functional for general elements in curv2(�).

Proposition 3.5 Fix y ∈ S
2 and let

Xy :=
{
ζ ∈ ∧1(R

3
x ) ∧∧1(R

3
y) :

3∑
k=1

ζ ki yk =
3∑

k=1

ζ ik yk =
3∑

k=1

ζ kk = 0 for all i = 1, 2, 3

}
.

(3.10)
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Let fy : Xy → [0,+∞) be defined by (recall (3.7))

fy(ζ ) := αH 〈�y, ζ 〉2 − 2αH H0〈�y, ζ 〉 + αH H2
0 − αK y · (cof ζ )y (3.11)

Then, defining η as in (2.5), we have

E(M) =
∫

�(M)∗
fy

(
η1(x, y)

|η0(x, y)|
)

|η0(x, y)| dH2(x, y).

Proof First observe that, by Lemma 3.3 and since by (3.1) the trace of ξ1 is zero,
η1(x, y) belongs to Xy for almost every (x, y) ∈ �(M)∗. Moreover, by (1.1),
Lemma 3.4, and the area formula, we have

E(M) =
∫

M

(
αH (tr L p − H0)

2 − αK tr(cof L p)
)
dH2(p)

=
∫

M

(
αH
(〈�ν(p)), ξ1(p, ν(p))〉 − H0

)2 − αK ν(p) · (cof ξ1(p, ν(p)))ν(p)
)

× dH2(p)

=
∫

�(M)∗

(
αH

(〈
�y,

η1(x, y)

|η0(x, y)|
〉
− H0

)2

− αK y ·
(
cof

η1(x, y)

|η0(x, y)|
)

y

)
|η0(x, y)| dH2(x, y),

where we have used that |ξ | = 1/|η0| = | det D�|. ��

We are now ready to define the functional E on a generalized Gauss graph.

Definition 3.6 The Canham–Helfrich functional defined on generalized Gauss graphs
is the functional E : curv2(�) → [−∞,+∞] given by

E(�) :=
∫

G∗
fy

(
η1(x, y)

|η0(x, y)|
)

|η0(x, y)|β(x, y) dH2(x, y), (3.12)

for every � = �G, η, β� ∈ curv2(�), whenever the integral exists.

4 Existence and Regularity of Minimizers

4.1 Technical Lemmas

For every ζ ∈ ∧1(R
3
x ) ∧∧1(R

3
y) and for every y ∈ S

2, let us define

gy(ζ ) := αH 〈�y, ζ 〉2 − αK y · (cof ζ )y and hy(ζ ) := 2αH H0〈�y, ζ 〉 (4.1)
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and let us identify ζ with a vector in u = u[ζ ] ∈ R
9 by

u = u[ζ ] := (ζ 11, ζ 12, ζ 13, ζ 21, ζ 22, ζ 23, ζ 31, ζ 32, ζ 33).

With these positions, we have (compare with the expression in (3.8))

〈�y, ζ 〉 = (0, y3,−y2,−y3, 0, y1, y2,−y1, 0) ·
u = y1(u6 − u8) − y2(u3 − u7) + y3(u2 − u4).

Lemma 4.1 Let (1.5) hold. The function gy : ∧1(R
3
x )∧∧1(R

3
y) → R defined in (4.1)

is represented by a quadratic form u �→ u · Ayu on R
9, where

Ay =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − αK
2 y23

αK
2 y2y3 0 αK

2 y2y3 − αK
2 y22

0 αH y23 −αH y2y3 −γ y23 0 γ y1y3 γ y2y3 −αH y1y3
αK
2 y1y2

0 −αH y2y3 αH y22 γ y2y3
αK
2 y1y3 −αH y1y2 −γ y22 γ y1y2 0

0 −γ y23 γ y2y3 αH y23 0 −αH y1y3 −αH y2y3 γ y1y3
αK
2 y1y2

− αK
2 y23 0 αK

2 y1y3 0 0 0 αK
2 y1y3 0 − αK

2 y21
αK
2 y2y3 γ y1y3 −αH y1y2 −αH y1y3 0 αH y21 γ y1y2 −γ y21 0
0 γ y2y3 −γ y22 −αH y2y3

αK
2 y1y3 γ y1y2 αH y22 −αH y1y2 0

αK
2 y2y3 −αH y1y3 γ y1y2 γ y1y3 0 −γ y21 −αH y1y2 αH y21 0

− αK
2 y22

αK
2 y1y2 0 αK

2 y1y2 − αK
2 y21 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for γ := αH − αK /2. Let

v(−αK /2) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y21 − 1
y1y2
y1y3
y1y2

y22 − 1
y2y3
y1y3
y2y3

y23 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v(2αH − αK /2) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−y3
y2
y3
0

−y1
−y2
y1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

v1(αK /2) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2y1y2y3
y3y22 − y3y21
y2y23 − y2

y3y22 − y3y21−2y1y2y3
y1 − y1y23
y2y23 − y2
y1 − y1y23

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v2(αK /2) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1y22 − y1y23
y32 − y2

y3y21 + y3y22
y32 − y2

y1 − y1y22
0

y3y21 + y3y22
0

−y31 − y1y22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then these vectors are eigenvectors of the matrix Ay with corresponding eigenvalues
−αK /2, 2αH − αK /2, and αK /2 with multiplicities 1, 1, and 2, respectively. The six
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vectors

v1(0) :=
⎛
⎝y
0
0

⎞
⎠ , v2(0) :=

⎛
⎝0

y
0

⎞
⎠ , v3(0) :=

⎛
⎝0
0
y

⎞
⎠ ,

v4(0) :=
⎛
⎝y1e1

y2e1
y3e1

⎞
⎠ , v5(0) :=

⎛
⎝y1e2

y2e2
y3e2

⎞
⎠ , v6(0) :=

⎛
⎝y1e3

y2e3
y3e3

⎞
⎠

generate the 5-dimensional subspace associated with the eigenvector 0.
The function hy : ∧1(R

3
x ) ∧ ∧

1(R
3
y) → R defined in (4.1) is represented by a

linear map u �→ u · vy where vy := −2αH H0v(2αH − αK /2).
Moreover, we have that

span{v1(0), v2(0), v3(0), v4(0), v5(0), v6(0), v(−αK /2)}

= span

⎧⎨
⎩
⎛
⎝y
0
0

⎞
⎠ ,

⎛
⎝0

y
0

⎞
⎠ ,

⎛
⎝0
0
y

⎞
⎠ ,

⎛
⎝y1e1

y2e1
y3e1

⎞
⎠ ,

⎛
⎝y1e2

y2e2
y3e2

⎞
⎠ ,

⎛
⎝y1e3

y2e3
y3e3

⎞
⎠ ,

⎛
⎝e1

e2
e3

⎞
⎠
⎫⎬
⎭

(4.2)

and by the isomorphism ζ �→ u[ζ ] the space Xy introduced in (3.10) transforms to

X̃y :=
{

u ∈ R
9 : u ⊥ span{v1(0), v2(0), v3(0), v4(0), v5(0), v6(0), v(−αK /2)}

}
.

(4.3)

Proof The claims follow by straightforward calculations. To prove (4.2), we observe
that,

v(−αK /2) = y1

⎛
⎝y
0
0

⎞
⎠+ y2

⎛
⎝0

y
0

⎞
⎠+ y3

⎛
⎝0
0
y

⎞
⎠−

⎛
⎝e1

e2
e3

⎞
⎠

and this concludes the proof. ��
Lemma 4.1 shows that the quadratic form Ay (and therefore the function gy) has

both a negative eigenvalue and the zero eigenvalue,which prevent positive definiteness.
Nonetheless, since the space Xy defined in (3.10) transforms to X̃y defined in (4.3),
which is the orthogonal to the directions where there is loss of positive definiteness, we
are able to prove, in the next Proposition, that it is possible to modify the integrand fy

defined in (3.11) to obtain the new function f̃ defined in (4.4) below, which is a
standard integrand in the sense of Definition 2.2.

Proposition 4.2 Let (1.5) hold. For y ∈ S
2, define the map Fy : R9 → R

Fy(u) := gy(u) − hy(u) + αH H2
0 + αK

2
|π0u|2 + αK |π−αK /2u|2

= u · Ayu − u · vy + αH H2
0 + αK

2
|π0u|2 + αK |π−αK /2u|2,
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where gy, hy are defined as in (4.1), π0, π−αK /2 : R9 → R
9 are the orthogonal pro-

jections on span{v1(0), . . . , v5(0)} and span{v(−αK /2)}, respectively. Moreover, let

f̃ : � × S
2 ×

(∧
1(R

3
x ) ∧∧1(R

3
y)
)

→ R, f̃ (x, y, ζ ) := Fy(u[ζ ]). (4.4)

Then f̃ is continuous, convex in the third variable, and there exist two constants c1 > 0
and c2 ≥ 0 such that

f̃ (x, y, ζ ) ≥ c1|ζ |2 − c2. (4.5)

In particular, f̃ has uniform superlinear growth in the third variable.

Proof Let π2αH −αK /2, παK /2 : R
9 → R

9 be the orthogonal projections on
span{v(2αH −αK /2)} and span{v1(αK /2), v2(αK /2)}, respectively. For everyu ∈ R

9,
by Lemma 4.1, we have

Fy(u) = −αK

2
|π−αK /2u|2 + αK

2
|παK /2u|2 +

(
2αH − αK

2

)
|π2αH −αK /2u|2

+ 2αH H0 u · v(2αH − αK /2) + αK

2
|π0u|2 + αK |π−αK /2u|2 + αH H2

0

= αK

2
|π−αK /2u|2 + αK

2
|παK /2u|2 +

(
2αH − αK

2

)
|π2αH −αK /2u|2

+ αK

2
|π0u|2 + 2αH H0 u · v(2αH − αK /2) + αH H2

0 . (4.6)

By (1.5), we deduce that Fy is convex (and therefore continuous) in u, so that f̃ is
convex (and therefore continuous) in the third variable. Moreover, by reconstructing
the norm |u[ζ ]|2 = |ζ |2 from the projections π• and by recalling that they are 1-
Lipschitz functions, we have that

f̃ (x, y, ζ ) = Fy(u[ζ ]) ≥ min
{αK

2
, 2αH − αK

2

}
|ζ |2 − 2

√
2αH |H0||ζ | + αH H2

0

(the factor
√
2 = |v(2αH − αK /2)| comes from Schwarz inequality), from which we

deduce the boundedness from below of f̃ and (4.5), with (a possible choice of)

c1 = 1

4
min{αK , 4αH − αK } and c2 = αH H2

0

(
8αH

min{αK , 4αH − αK } − 1

)
.

Finally, the continuity of f̃ with respect to y follows from the structure of the matrix
Ay and of the vector vy in Lemma 4.1. ��
Proposition 4.3 Let f̃ be the function defined in (4.4). The, for every � = �G, η, β� ∈
curv2(�), it holds that

E(�) =
∫

G∗
f̃

(
x, y,

η1(x, y)

|η0(x, y)|
)

|η0(x, y)|β(x, y) dH2(x, y). (4.7)
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Proof Let (x, y) ∈ G∗. By Lemma 3.3 and Lemma 4.1 we have that u[ξ1(x, y)] ∈ X̃y ,
from which we obtain that π0u[ξ1(x, y)] = π−αK /2u[ξ1(x, y)] = 0. Keeping (3.11),
(4.1), and (4.4) into account, this implies that

f̃ (x, y, ξ1(x, y)) = Fy(u[ξ1(x, y)]) = fy(ξ1(x, y)),

which, by (3.12), implies (4.7). ��
Lemma 4.4 Let A � � and let � j = �G j , η j , β j � ∈ curv2(�) be such that spt� j ⊆
A × S

2 for every j ∈ N and � j⇀� = �G, η, β� ∈ curv2(�) as j → ∞. Then
spt� ⊆ A × S

2 and

lim
j→∞

∫
G j

|(η j )0(x, y)|β j (x, y) dH2(x, y) =
∫

G
|η0(x, y)|β(x, y) dH2(x, y). (4.8)

In particular, if M j , M are two-dimensional oriented manifold of class C2 contained in
A, if G j , G are the associated Gauss graphs by (2.3), and � j = �G j = �G j , η j , 1�,
� = �G = �G, η, 1� are the associated currents, if � j⇀�, then H2(M j ) →
H2(M).

Proof We first observe that the condition on the supports is closed, so that spt� ⊆
A × S

2. Let g ∈ Cc(� × R
3
y) be such that g = 1 on A × S

2. Then the convergence

∫
G j

|(η j )0(x, y)|β j (x, y) dH2(x, y) = � j (gϕ∗) → �(gϕ∗)

=
∫

G
|η0(x, y)|β(x, y) dH2(x, y)

follows immediately by (2.6). The proof of the last statement is obtained by combining
(3.4) and (4.8):

lim
j→∞H2(M j ) = lim

j→∞

∫
G j

|(η j )0(x, y)| dH2(x, y)

=
∫

G
|η0(x, y)| dH2(x, y) = H2(M).

This concludes the proof. ��

4.2 Minimization Problems

In this section we study various minimization problems for the energy E in (3.12). In
the first two (see Theorems 4.5 and 4.6 below), reasonable sufficient conditions for
unconstrainedminimization are provided. In the third one (seeTheorem4.9 below),we
tackle constrained minimization in terms of prescribed enclosed volume and surface
area for a closed membrane.
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For A � � and c > 0, we define the class

X (0,1)
A,c (�) := {

� = �G, η, β� ∈ curv(0,1)
2 (�) : spt� ⊆ A × S

2, M(∂�) + M(�) ≤ c
}
(4.9)

of generalized Gauss graphs with compact support and equi-boundedmasses. Our first
existence result is the following.

Theorem 4.5 Let (1.5) hold. The minimization problem

min
{
E(�) : � ∈ X (0,1)

A,c (�)
}

(4.10)

has a solution.

Proof Let c2 be the constant in (4.5) and, for every � = �G, η, β� ∈ curv(0,1)
2 (�),

define the functional

E (0,1)(�) :=
∫

G∗

(
f̃

(
x, y,

η1(x, y)

|η0(x, y)|
)

+ c2

)
|η0(x, y)|β(x, y) dH2(x, y)

= E(�) + c2

∫
G∗

|η0(x, y)|β(x, y) dH2(x, y),

where the last equality follows from Proposition 4.3. Inequality (4.5) allows us to
apply Theorem 2.4 and obtain that E (0,1) is lower semicontinuous in curv(0,1)

2 (�).
By Lemma 4.4, it follows that also the functional E is lower semicontinuous
in curv(0,1)

2 (�). By Theorems 2.1 and 2.4, any minimizing sequence � j =
�G j , η j , β j � ∈ X (0,1)

A,c (�) for E is compact in X (0,1)
A,c (�). The thesis then follows

from the direct method of the Calculus of Variations. ��
Inequality (4.5) and Lemma 4.4 suggest that it is not necessary to bound the entire∫

G∗
β

|η0|dH2 for � = �G, η, β� ∈ curv∗
2(�) in order to apply Theorem 2.5, so that we

can consider the class

X ∗
A,c(�) :=

{
� = �G, η, β� ∈ curv∗

2(�) : spt� ⊆ A × S
2,

M(∂�) +
∫

G∗

(
|η0(x, y)| + |η2(x, y)|2

|η0(x, y)|
)

β(x, y) dH2(x, y) ≤ c

}
.

(4.11)

The bound on
∫

G∗
|η1(x,y)|2
|η0(x,y)|2 |η0(x, y)|β(x, y) dH2(x, y), together with the one on the

second term in (4.11), imply the boundedness of the mass of �. Moreover, these
bounds are needed in order to have closedness in the class curv∗

2(�), which in general
is not closed, contrary to curv2(�). In particular, for the regular Gauss graph G of a
manifold M , they imply an L4-bound on the curvatures of M , since

∫
G∗

(
|η0| + |η1|2

|η0| + |η2|2
|η0|

)
dH2 =

∫
M

|ξ |2dH2
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=
∫

M

(
H(x)2 + (1 − K (x))2

)
dH2(x),

for the proof see [1, Proposition 1.1 and Example 1.2]. We present now our second
existence result.

Theorem 4.6 Let (1.5) hold. The minimization problem

min
{
E(�) : � ∈ X ∗

A,c(�)
}

(4.12)

has a solution.

Proof Let us consider a minimizing sequence � j = �G j , η j , β j � ∈ X ∗
A,c(�) for the

functional E . By Proposition 4.3 and (4.5), we obtain

E(� j ) =
∫

G∗
j

f̃

(
x, y,

(η j )1(x, y)

|(η j )0(x, y)|
)

|(η j )0(x, y)|β j (x, y) dH2(x, y)

≥ c1

∫
G∗

j

|(η j )1(x, y)|2
|(η j )0(x, y)|2 |(η j )0(x, y)|β j (x, y) dH2(x, y)

− c2

∫
G∗

j

|(η j )0(x, y)|β j (x, y) dH2(x, y).

Now, by (4.11), the minimizing sequence satisfies the hypotheses of Theorem 2.5 and
therefore there exist a subsequence {� jk }k∈N and a special generalized Gauss graph
�∞ ∈ curv∗

2(�) such that � jk ⇀�∞ as k → ∞. The thesis follows from the direct
method of the Calculus of Variations. ��
Remark 4.7 We called the minimization problems (4.10) and (4.12) unconstrained
because the classesX (0,1)

A,c (�) in (4.9) andX ∗
A,c(�) in (4.11) do not contain geometric

constraints, namely, there are no generalizedGauss graphs excluded from these classes
based on their geometry. In particular, this allows us to consider the zero current� = 0
as a competitor for both minimization problems, and it turns out to be an absolute
minimizer if H0 = 0. Indeed, in this case, (4.5) becomes f̃ (x, y, ζ ) ≥ c1|ζ |2, so
that E ≥ 0. Notice that also a generalized Gauss graph � supported on a plane
(H = K = 0) has zero energy, showing that both (4.10) and (4.12) have no unique
solution.

On the other hand, if H0 �= 0, observe that a sphere� (or a portion of it, compatibly
with A) with mean curvature H = H0 makes the functional E negative. Indeed, since
for spheres there holds K = H2/4, we have E(�) = −αK H2

0H2(�)/4 < 0 =
E(0) < αH H2

0 = E(�).

Given � = �G, η, β� ∈ curv2(�), we define

A(�) :=
∫

G
|η0(x, y)|β(x, y) dH2(x, y). (4.13)
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In light of Remark 3.2, if � is a regular Gauss graph with multiplicity, the quantity
A(�) has the geometric interpretation of mass of p1�, see (3.3); in particular, if
β ≡ 1, then A(�) = H2(M), the area of the manifold M := p1�, see (3.4).

We also define the quantity

V(�) := 1

3

∫
G
(x · y) |η0(x, y)|β(x, y) dH2(x, y). (4.14)

If � is a closed (∂� = 0) regular Gauss graph with multiplicity β ≡ 1, by a simple
application of the Divergence Theorem, the quantity V(�) has the geometric inter-
pretation of the enclosed volume in M := p1�. Indeed, if M = ∂ A, then by means
of the area formula we get

1

3

∫
G
(x · y) |η0(x, y)| dH2(x, y) = 1

3

∫
M

p · ν(p) dH2(p)

= 1

3

∫
A
div(p) dp = H3(A).

Lemma 4.8 Let A � � and let � j = �G j , η j , β j � ∈ curv2(�) be such that spt� j ⊆
A × S

2 and ∂� j = 0 for every j ∈ N and � j⇀� = �G, η, β� ∈ curv2(�) as
j → ∞. Then spt� ⊆ A × S

2, ∂� = 0, and

lim
j→∞

∫
G j

(x · y) |(η j )0(x, y)|β j (x, y) dH2(x, y)

=
∫

G
(x · y) |η0(x, y)|β(x, y) dH2(x, y).

(4.15)

In particular, if M j = ∂ E j and M = ∂ E for E j , E sets of class C2 contained in A,
if G j , G are the associated Gauss graphs by (2.3), and � j = �G j = �G j , η j , 1�,
� = �G = �G, η, 1� are the associated currents, if � j⇀�, thenH3(E j ) → H3(E).

Proof The proof is the same as that of Lemma 4.4. ��
Nextwe study constrainedminimization problems, namelywe prescribe the surface

area and the enclosed volume. Given a, v > 0, we define the classes

X (0,1)
A,c;a,v

(�) :=
{

� = �G, η, β� ∈ curv(0,1)
2 (�) : spt� ⊆ A × S

2, ∂� = 0,

M(�) ≤ c,A(�) = a,V(�) = v

}
.

X ∗
A,c;a,v(�) :=

{
� = �G, η, β� ∈ curv∗

2(�) : spt� ⊆ A × S
2, ∂� = 0,

∫
G∗

|η2(x, y)|2
|η0(x, y)| β(x, y) dH2(x, y) ≤ c,A(�) = a,V(�) = v

}
.
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In order for two-dimensional closed oriented manifolds of class C2 to belong to these
classes, we enforce the isoperimetric inequality

36π v2 ≤ a3. (4.16)

Theorem 4.9 Let (1.5) hold and let a, v > 0 satisfy (4.16). The minimization problems

min
{
E(�) : � ∈ X (0,1)

A,c;a,v
(�)

}
, min

{
E(�) : � ∈ X ∗

A,c;a,v(�)
}

(4.17)

have a solution.

Proof The proof is the same as that of Theorems 4.5 and 4.6, upon noting that Lem-
mas 4.4 and 4.8 provide the continuity for the area and enclosed volume constraints.

��
We conclude this subsection with two remarks on the necessity of assumption (1.5).

Remark 4.10 [4αH ≤ αK ] In the case, then there exists a constant r ≥ 0 such that
αK = 4αH + r . For the Gauss graph G of a smooth surface M , we have

H2(G) =
∫

M
|ξ(p, ν(p))| dH2(p) =

∫
M

√
4H(p)2 + (1 − K (p))2 dH2(p),

where ξ is defined in (2.4). We consider M j = ∂ B1/ j , where B1/ j is the ball of radius
1/ j centered in the origin, and we let � j := �G j = �G j , η j , 1�. Since the principal
curvatures of M j are both equal to j , we get from the above formula

M(� j ) = H2(G j ) ≤ 4π

j2

√
j4 + 14 j2 + 1,

which is uniformly bounded for every j ∈ N \ {0}. Thus, for � = B2, we have that
� j ∈ curv(0,1)

2 (�) for every j ∈ N and, since ∂� j = 0, we also have that � j belongs

to X (0,1)
A,c (�) for every j ∈ N \ {0}, for a suitable choice of A and c. Since � j is

a regular Gauss graph, E(� j ) = E(M j ), so that, using the expression in (1.1), we
obtain

E(M j ) = 4π

(
αH H2

0

j2
− 4αH H0

j
− r

)
, (4.18)

using the fact that H2 = 4K for spheres. We now consider two cases.

(1) r > 0: the functional E is no longer lower semicontinuous, since � j⇀0 and, by
(4.18), lim inf

j→∞ E(M j ) = −4πr < 0 = E(0).

(2) r = 0 and H0 = 0: from (4.6) it is easy to see that E ≥ 0 and by (4.18) E(M j ) = 0
for every j ∈ N\{0}, from which we obtain that E is minimized on spheres. We
also notice that E is minimized on flat surfaces (H = K = 0).
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The construction above can adapted to the constrained case by taking

M j = ∂ BR j ∪ ∂ Bρ j / j

for suitable R j , ρ j > 0, where all the spherical surfaces are oriented with the outward

normal, such thatA(M j ) = H2(M j ) = a andV(�M j ) = v. Then�M j ∈ X (0,1)
A,c;a,v

(�)

and E(M j ) has an expression similar to that in (4.18), so that the same conclusions
above hold.

The case r = 0 and H0 �= 0 is open and we do not have a counterexample at the
moment.

Remark 4.11 [αK = 0] In this case, theCanham–Helfrich functional E in (1.1) reduces
to the functional

W0(M) := αH

∫
M

(H(p) − H0)
2 dH2(p), (4.19)

which is non-negative and is minimized by a (portion of a) sphere with mean curvature
H = H0. Moreover, if H0 = 0, this further reduces to the Willmore functional W
in (1.2), which is again non-negative and minimized, for instance, on flat surfaces or
on minimal surfaces. There is a vast literature on the Willmore functional both in the
constrained and unconstrained case, see, e.g., [23, 30, 32, 35, 36] in addition to those
already mentioned in the Introduction.

Here we observe that Lemma 4.1 provides the eigenvalue 2αH with multiplicity 1
and the zero eigenvalue with algebraic multiplicity 8. Moreover, it is necessary for the
coercivity of E that all the eigenvectors associated with the zero eigenvalue belong to
X̃⊥

y and this is not the case. Therefore, we cannot prove the coercivity in (4.5) so that
the direct method of the Calculus of Variations cannot be applied to show existence
of minimizers. This suggests that the space of generalized Gauss graphs is not a good
environment to study the Willmore functional W of (1.2).

4.3 Regularity of Minimizers

We prove a regularity result for minimizers of E .

Theorem 4.12 Let (1.5) hold and let � ∈ curv2(�) be a solution either of problem
(4.10) or of problem (4.12) with ∂� = 0, or of problems (4.17). Then p1� is C2-
rectifiable, that is there exists a countable family {S j } j∈N of surfaces of class C2 in R

3

such that
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H2
(

p1� \
⋃
j∈N

S j

)
= 0.

Proof We start by observing that, by [8, Theorem 6.1], since ∂� = 0 and |�1| � |�0|,
we get that p1� is the support of a 2-dimensional curvature varifold (see the proof of [8,
Theorem 6.1] for the explicit construction). The regularity of � is now a consequence
of [27, Theorem 1]. ��
Remark 4.13 We point out that Theorem 4.12 cannot be obtained using the Structure
Theorem [1, Theorem 2.10], which asserts that if � is a generalized Gauss graph then
p1� is (only) C1-rectifiable.
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493–496 (1965)

43. Wojtowytsch, S.: Helfrich’s energy and constrained minimisation. Commun. Math. Sci. 15(8), 2373–
2386 (2017)

44. Young, L.C.: Surfaces paramétriques généralisées. Bull. Soc. Math. Fr. 79, 59–84 (1951)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs
	Abstract
	1 Introduction
	1.1 Motivations from Biological Membranes and Outlook

	2 Brief Theory of Generalized Gauss Graphs
	2.1 Exterior Algebra and Rectifiable Currents
	2.2 Gauss Graphs

	3 The Canham–Helfrich Energy of a Generalized Gauss Graph
	4 Existence and Regularity of Minimizers
	4.1 Technical Lemmas
	4.2 Minimization Problems
	4.3 Regularity of Minimizers

	Acknowledgements
	References


