Intelligent reflecting surfaces (IRSs) have several prominent advantages, including improving the level of wireless com- munication security and privacy. In this work, we focus on the latter aspect and introduce a strategy to counteract the presence of passive eavesdroppers overhearing transmissions from a base station towards legitimate users that are facilitated by the presence of IRSs. Specifically, we envision a transmission scheme that cycles across a number of IRS-to-user assignments, and we select them in a near-optimal fashion, thus guaranteeing both a high data rate and a good secrecy rate. Unlike most of the existing works addressing passive eavesdropping, the strategy we envision has low complexity and is suitable for scenarios where nodes are equipped with a limited number of antennas. Through our performance evaluation, we highlight the trade-off between the legitimate users’ data rate and secrecy rate, and how the system parameters affect such a trade-off.
Eavesdropping with Intelligent Reflective Surfaces: Near-Optimal Configuration Cycling / Malandrino, F.; Nordio, A.; Chiasserini, C. F.. - In: COMPUTER NETWORKS. - ISSN 1389-1286. - 243:(2024). [10.1016/j.comnet.2024.110284]
Eavesdropping with Intelligent Reflective Surfaces: Near-Optimal Configuration Cycling
C. F. Chiasserini
2024
Abstract
Intelligent reflecting surfaces (IRSs) have several prominent advantages, including improving the level of wireless com- munication security and privacy. In this work, we focus on the latter aspect and introduce a strategy to counteract the presence of passive eavesdroppers overhearing transmissions from a base station towards legitimate users that are facilitated by the presence of IRSs. Specifically, we envision a transmission scheme that cycles across a number of IRS-to-user assignments, and we select them in a near-optimal fashion, thus guaranteeing both a high data rate and a good secrecy rate. Unlike most of the existing works addressing passive eavesdropping, the strategy we envision has low complexity and is suitable for scenarios where nodes are equipped with a limited number of antennas. Through our performance evaluation, we highlight the trade-off between the legitimate users’ data rate and secrecy rate, and how the system parameters affect such a trade-off.File | Dimensione | Formato | |
---|---|---|---|
elsevier_irs_R3_v2.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S1389128624001166-main.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2986251