Microbial systems exhibit marked variability in metabolic phenotypes. A recently-proposed class of models explains this feature within a minimal mathematical setup which assumes that populations evolve towards maximum growth rate in a 'phenotypic space' subject to an intrinsic 'diffusive' stochasticity that causes small random changes in single-cell phenotypes. In such a framework, variability results from the exploration-exploitation balance between hardly accessible fast-growing phenotypes and easily accessible slow-growing ones. Here we extend the above scheme to include a degree of extrinsic noise, showing that the population dynamics over the phenotypic space is captured by an effective process that conflates both sources of randomness. This in turn leads to a simple approximation for the asymptotic distribution of the population over the phenotypic space, highlighting the connection between the strength of the noise that affects the dynamics and the degree of optimization. The theory thus obtained displays an excellent agreement with numerical simulations of low-dimensional systems.

Effective noisy dynamics within the phenotypic space of a growth-rate maximizing population / Batista-Tomás, A. R.; De Martino, Andrea; Mulet, Roberto. - In: PHYSICA. A. - ISSN 0378-4371. - 634:(2024), pp. 1-9. [10.1016/j.physa.2023.129451]

Effective noisy dynamics within the phenotypic space of a growth-rate maximizing population

De Martino, Andrea;
2024

Abstract

Microbial systems exhibit marked variability in metabolic phenotypes. A recently-proposed class of models explains this feature within a minimal mathematical setup which assumes that populations evolve towards maximum growth rate in a 'phenotypic space' subject to an intrinsic 'diffusive' stochasticity that causes small random changes in single-cell phenotypes. In such a framework, variability results from the exploration-exploitation balance between hardly accessible fast-growing phenotypes and easily accessible slow-growing ones. Here we extend the above scheme to include a degree of extrinsic noise, showing that the population dynamics over the phenotypic space is captured by an effective process that conflates both sources of randomness. This in turn leads to a simple approximation for the asymptotic distribution of the population over the phenotypic space, highlighting the connection between the strength of the noise that affects the dynamics and the degree of optimization. The theory thus obtained displays an excellent agreement with numerical simulations of low-dimensional systems.
2024
File in questo prodotto:
File Dimensione Formato  
73-Effective noisy dynamics.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2986187