The decentralized estimation and tracking of a mobile target performed by a group of unmanned aerial vehicles (UAVs) is studied in this work. A flocking protocol is used for maintaining a collision-free formation, while a decentralized extended Kalman filter in the information form is employed to provide an estimate of the target state. In the prediction step of the filter, we adopt and compare three different models for the target motion with increasing levels of complexity, namely, a constant velocity (CV), a constant turn (CT), and a full-state (FS) model. Software-in-the-loop (SITL) simulations are conducted in ROS/Gazebo to compare the performance of the three models. The coupling between the formation and estimation tasks is evaluated since the tracking task is affected by the outcome of the estimation process.

Comparison of Multiple Models in Decentralized Target Estimation by a UAV Swarm / Lizzio, Fausto Francesco; Bugaj, Martin; Rostáš, Ján; Primatesta, Stefano. - In: DRONES. - ISSN 2504-446X. - 8:1(2024). [10.3390/drones8010005]

Comparison of Multiple Models in Decentralized Target Estimation by a UAV Swarm

Lizzio, Fausto Francesco;Primatesta, Stefano
2024

Abstract

The decentralized estimation and tracking of a mobile target performed by a group of unmanned aerial vehicles (UAVs) is studied in this work. A flocking protocol is used for maintaining a collision-free formation, while a decentralized extended Kalman filter in the information form is employed to provide an estimate of the target state. In the prediction step of the filter, we adopt and compare three different models for the target motion with increasing levels of complexity, namely, a constant velocity (CV), a constant turn (CT), and a full-state (FS) model. Software-in-the-loop (SITL) simulations are conducted in ROS/Gazebo to compare the performance of the three models. The coupling between the formation and estimation tasks is evaluated since the tracking task is affected by the outcome of the estimation process.
2024
File in questo prodotto:
File Dimensione Formato  
drones-08-00005.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2984754