Multi-view observations potentially offer a more comprehensive understanding of real-world phenomena com- pared to observations acquired from a single viewpoint. Existing models that utilize multi-view data often consider that all views are available during inference, but this assumption may not hold in practical scenarios. To address this limitation, we introduce MVLD, a novel method that, by employing a deterministic autoencoder and a score-based diffusion model, is capable of imputing missing views. We finally envision MVLD being used in a communication system for image transmission.
Multi-View Latent Diffusion / DI GIACOMO, Giuseppe; Franzese, Giulio; Cerquitelli, Tania; Chiasserini, Carla Fabiana; Michiardi, Pietro. - ELETTRONICO. - (2023). (Intervento presentato al convegno 2023 IEEE International Conference on Big Data tenutosi a Sorrento (Italy) nel 15-18 December 2023) [10.1109/BigData59044.2023.10386945].
Multi-View Latent Diffusion
Giuseppe Di Giacomo;Tania Cerquitelli;Carla Fabiana Chiasserini;
2023
Abstract
Multi-view observations potentially offer a more comprehensive understanding of real-world phenomena com- pared to observations acquired from a single viewpoint. Existing models that utilize multi-view data often consider that all views are available during inference, but this assumption may not hold in practical scenarios. To address this limitation, we introduce MVLD, a novel method that, by employing a deterministic autoencoder and a score-based diffusion model, is capable of imputing missing views. We finally envision MVLD being used in a communication system for image transmission.File | Dimensione | Formato | |
---|---|---|---|
Poster___Multi_View_Latent_Diffusion-3.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
174.35 kB
Formato
Adobe PDF
|
174.35 kB | Adobe PDF | Visualizza/Apri |
Chiasserini-Multi-view.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
241.21 kB
Formato
Adobe PDF
|
241.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2983795