The use of macrocapsules in self-healing applications offers a potential benefit by carrying a larger amount of healing agent in comparison with microcapsules. However, the application of macrocapsules is still limited to paste and mortar levels on lab-scale. This is due to a concern that most capsules might be broken when mixed with concrete components. In this study, cementitious tubular capsules were used and they were considered as a partial replacement of coarse aggregates (2 vol% gravel). The capsules have a dimension of 54 mm and 9 mm in length and outer diameter, respectively. A water-repellent agent (WRA) was entrapped in the capsules as a proposed agent to seal the crack. Initial results revealed high survivability of capsules during concrete mixing: 100% survival ratio when tested in a drum mixer and 70–95% when tested in a planetary mixer. The mechanical and self-sealing properties of concrete containing embedded capsules were evaluated. With the addition of capsules, around 8% reduction of compressive strength was noticed, but no further effect on splitting tensile strength was detected as compared with concrete without capsules. Ultrasonic pulse velocity (UPV) tests confirmed that the presence of capsules also did not significantly affect the compactness of the hardened concrete. Furthermore, the embedded capsules were able to break when a crack was introduced and it was found that 90% sealing efficiency was achieved by capsule-based concrete as a result of the successful release of sealing agent into the crack.

Applicability of cementitious capsules in concrete production: initial assessment on capsule robustness, mechanical and self-sealing properties of concrete / Hermawan, Harry; Simons, Alicia; Teirlynck, Silke; Serna, Pedro; Minne, Peter; Anglani, Giovanni; Tulliani, Jean-Marc; Antonaci, Paola; Gruyaert, Elke. - In: MATEC WEB OF CONFERENCES. - ISSN 2261-236X. - ELETTRONICO. - 378:(2023), pp. 1-6. (Intervento presentato al convegno SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems tenutosi a Ghent, Belgium nel May 22-23, 2023) [10.1051/matecconf/202337802013].

Applicability of cementitious capsules in concrete production: initial assessment on capsule robustness, mechanical and self-sealing properties of concrete

Anglani, Giovanni;Tulliani, Jean-Marc;Antonaci, Paola;
2023

Abstract

The use of macrocapsules in self-healing applications offers a potential benefit by carrying a larger amount of healing agent in comparison with microcapsules. However, the application of macrocapsules is still limited to paste and mortar levels on lab-scale. This is due to a concern that most capsules might be broken when mixed with concrete components. In this study, cementitious tubular capsules were used and they were considered as a partial replacement of coarse aggregates (2 vol% gravel). The capsules have a dimension of 54 mm and 9 mm in length and outer diameter, respectively. A water-repellent agent (WRA) was entrapped in the capsules as a proposed agent to seal the crack. Initial results revealed high survivability of capsules during concrete mixing: 100% survival ratio when tested in a drum mixer and 70–95% when tested in a planetary mixer. The mechanical and self-sealing properties of concrete containing embedded capsules were evaluated. With the addition of capsules, around 8% reduction of compressive strength was noticed, but no further effect on splitting tensile strength was detected as compared with concrete without capsules. Ultrasonic pulse velocity (UPV) tests confirmed that the presence of capsules also did not significantly affect the compactness of the hardened concrete. Furthermore, the embedded capsules were able to break when a crack was introduced and it was found that 90% sealing efficiency was achieved by capsule-based concrete as a result of the successful release of sealing agent into the crack.
2023
File in questo prodotto:
File Dimensione Formato  
matecconf_smartincs2023_02013.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 792.36 kB
Formato Adobe PDF
792.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2983306