In this paper we apply neural network models to a set of natural numbers in order to classify the congruence classes modulo a given integer m ∈ {2, 3,..., 10}. We compare the performances of two kinds of architectures and of several input data representations. It turns out that these tasks are fully solved using a convolutional architecture and a special representation for the input data that exploits the prime factor decomposition of numbers.

On the Construction of Numerical Models through a Prime Convolutional Approach / Almhaithawi, Doaa; Bertini, Massimo; Cuomo, Stefano; Panelli, Francesco; Bellini, Alessandro; Cerquitelli, Tania. - ELETTRONICO. - (2023), pp. 2821-2829. (Intervento presentato al convegno European Safety and Reliability Conference (ESREL 2023) tenutosi a Southampton (UK) nel 3 -7 September 2023) [10.3850/978-981-18-8071-1_P672-cd].

On the Construction of Numerical Models through a Prime Convolutional Approach

Almhaithawi, Doaa;Cerquitelli, Tania
2023

Abstract

In this paper we apply neural network models to a set of natural numbers in order to classify the congruence classes modulo a given integer m ∈ {2, 3,..., 10}. We compare the performances of two kinds of architectures and of several input data representations. It turns out that these tasks are fully solved using a convolutional architecture and a special representation for the input data that exploits the prime factor decomposition of numbers.
2023
978-981-18-8071-1
File in questo prodotto:
File Dimensione Formato  
P672.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 179.91 kB
Formato Adobe PDF
179.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982821