This paper presents a novel approach based on electromagnetic waves (EM) to classify food packages that hold water as one of the main ingredients from the inside into contaminated or uncontaminated products. A non-destructive technique that can handle a real-time food production line is proposed to achieve this goal. This technique combines the operation of a microwave sensing system (MW) with a machine learning (ML) classifier. An accuracy of 100% has been obtained from training the aforementioned ML tool on a dataset constructed from the retrieved scattering parameters of about 500 measuring samples.
In-Line Microwave Nondestructive Evaluation of Packaged Food Products via the Support Vector Machine Algorithm / Darwish, A.; Ricci, M.; Zidane, F.; Tobon Vasquez, J. A.; Casu, M. R.; Lanteri, J.; Migliaccio, C.; Vipiana, F.. - ELETTRONICO. - (2023), pp. 343-344. (Intervento presentato al convegno 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI) tenutosi a Portland, OR, USA nel 23-28 July 2023) [10.1109/USNC-URSI52151.2023.10237859].
In-Line Microwave Nondestructive Evaluation of Packaged Food Products via the Support Vector Machine Algorithm
Darwish A.;Ricci M.;Tobon Vasquez J. A.;Casu M. R.;Vipiana F.
2023
Abstract
This paper presents a novel approach based on electromagnetic waves (EM) to classify food packages that hold water as one of the main ingredients from the inside into contaminated or uncontaminated products. A non-destructive technique that can handle a real-time food production line is proposed to achieve this goal. This technique combines the operation of a microwave sensing system (MW) with a machine learning (ML) classifier. An accuracy of 100% has been obtained from training the aforementioned ML tool on a dataset constructed from the retrieved scattering parameters of about 500 measuring samples.File | Dimensione | Formato | |
---|---|---|---|
n_line_Microwave_Nondestructive_Evaluation_of_Packaged_Food_Products_via_the_Support_Vector_Machine_Algorithm_edited.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Visualizza/Apri |
Darwish_In-Line.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.54 MB
Formato
Adobe PDF
|
3.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982786