The last decade has seen significant changes in the power grid complexity due to the increased integration of multiple heterogeneous distributed energy resources. Accurate and fast power flow analysis tools have then become essential to guarantee grid stability, reliable operation, strategic planning, and market strategies. State-of-the-art approaches to power flow analysis are based on iterative numerical techniques which exhibit high accuracy but slow-, or even no-, convergence. For this reason, researchers have investigated the use of data-driven techniques that, while exhibiting lower accuracy with respect to iterative numerical ones, have the advantage of being extremely fast. To address the lack of accuracy, physics-informed data-driven techniques, i.e., techniques that leverage both the data and domain knowledge to generate simultaneously fast and accurate models, have been proposed. Nevertheless, these works exhibit two main limitations: i) they do not fully leverage the physical knowledge, and ii) they do not fairly compare the different approaches. In this paper, we propose a novel physics informed data-driven model able to address both limitations by fully leveraging the physical knowledge into the data-driven, i.e., constraining the model and augmenting the available data, and proposing a framework able to fairly compare the different approaches proving the actual effectiveness of the proposal. Results on the IEEE 57 realistic power network will support the proposal.
Physics Informed Data Driven Techniques for Power Flow Analysis / Parodi, Guido; Oneto, Luca; Ferro, Giulio; Zampini, Stefano; Robba, Michela; Anguita, Davide; Coraddu, Andrea. - (2023), pp. 33-40. (Intervento presentato al convegno 2023 IEEE Symposium Series on Computational Intelligence tenutosi a Mexico City (Mexico) nel 05-08 December 2023) [10.1109/SSCI52147.2023.10371975].
Physics Informed Data Driven Techniques for Power Flow Analysis
Stefano Zampini;
2023
Abstract
The last decade has seen significant changes in the power grid complexity due to the increased integration of multiple heterogeneous distributed energy resources. Accurate and fast power flow analysis tools have then become essential to guarantee grid stability, reliable operation, strategic planning, and market strategies. State-of-the-art approaches to power flow analysis are based on iterative numerical techniques which exhibit high accuracy but slow-, or even no-, convergence. For this reason, researchers have investigated the use of data-driven techniques that, while exhibiting lower accuracy with respect to iterative numerical ones, have the advantage of being extremely fast. To address the lack of accuracy, physics-informed data-driven techniques, i.e., techniques that leverage both the data and domain knowledge to generate simultaneously fast and accurate models, have been proposed. Nevertheless, these works exhibit two main limitations: i) they do not fully leverage the physical knowledge, and ii) they do not fairly compare the different approaches. In this paper, we propose a novel physics informed data-driven model able to address both limitations by fully leveraging the physical knowledge into the data-driven, i.e., constraining the model and augmenting the available data, and proposing a framework able to fairly compare the different approaches proving the actual effectiveness of the proposal. Results on the IEEE 57 realistic power network will support the proposal.File | Dimensione | Formato | |
---|---|---|---|
26- Physics Informed Data Driven Techniques for Power Flow Analysis.pdf
accesso aperto
Descrizione: Paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
Physics_Informed_Data_Driven_Techniques_for_Power_Flow_Analysis.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982683