We propose a Nonlinear Model Predictive Control approach to spacecraft rendezvous in non-Keplerian Lunar orbits. The approach is based on the Pontryagin Minimum Principle and allows the accomplishment of minimum-propellant maneuvers. The relative motion between the chaser and the target is described by the nonlinear and unstable dynamics of the circular restricted three body-problem. In the proposed formulation, we design a minimum-propellant controller, which leads to a bang-bang behavior of the control signal. Under suitable assumptions, simplified dynamics is employed as prediction model, in order to reduce the complexity of the controller algorithm but, at the same time, without penalizing the controller tracking performance. The proposed approach's effectiveness is validated by a simulation example.

A Minimum-propellant Pontryagin-based Nonlinear MPC for Spacecraft Rendezvous in Lunar Orbit / Bucchioni, Giordana; Alfino, Francesco; Pagone, Michele; Novara, Carlo. - ELETTRONICO. - (In corso di stampa). (Intervento presentato al convegno The 62nd IEEE Conference on Decision and Control tenutosi a Singapore (SG) nel 13-15/12/2023).

A Minimum-propellant Pontryagin-based Nonlinear MPC for Spacecraft Rendezvous in Lunar Orbit

Michele Pagone;Carlo Novara
In corso di stampa

Abstract

We propose a Nonlinear Model Predictive Control approach to spacecraft rendezvous in non-Keplerian Lunar orbits. The approach is based on the Pontryagin Minimum Principle and allows the accomplishment of minimum-propellant maneuvers. The relative motion between the chaser and the target is described by the nonlinear and unstable dynamics of the circular restricted three body-problem. In the proposed formulation, we design a minimum-propellant controller, which leads to a bang-bang behavior of the control signal. Under suitable assumptions, simplified dynamics is employed as prediction model, in order to reduce the complexity of the controller algorithm but, at the same time, without penalizing the controller tracking performance. The proposed approach's effectiveness is validated by a simulation example.
File in questo prodotto:
File Dimensione Formato  
A Minimum_propellant Pontryagin_based Nonlinear MPC for Spacecraft Rendezvous in Lunar Orbit.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 413.29 kB
Formato Adobe PDF
413.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982190