This paper describes a cyber-physical system for the manipulation of Deformable Linear Objects (DLOs) addressing the DLO-in-hole insertion problem targeting an industrial sce-nario, the switchgear's components cabling task. In particular, the task considered is the insertion of DLOs in the switchgear components' holes. This task is very challenging since a precise knowledge of the DLO tip position and orientation is required for a successful operation. We tackled the DLO-in-hole problem from the computer vision perspective constraining our setup on employing just simple 2D images and by using the mobility of the robotic arm for achieving the full 3D knowledge of the DLOs. Then, the DLO tip is detected from two different image planes and the robot's trajectory corrected accordingly before insertion. To prove the effectiveness of the proposed solution, an example scenario is prepared and the method validated experimentally attempting the insertion of several DLOs in a sample switchgear component, obtaining an overall insertion success rate of 82.5 %.

Cable Detection and Manipulation for {DLO}-in-Hole Assembly Tasks / Galassi, Kevin; Caporali, Alessio; Palli, Gianluca. - (2022), pp. 01-06. (Intervento presentato al convegno International Conference on Industrial Cyber-Physical Systems 2022 tenutosi a Coventry (UK) nel 24-26 May 2022) [10.1109/icps51978.2022.9817006].

Cable Detection and Manipulation for {DLO}-in-Hole Assembly Tasks

Kevin Galassi;
2022

Abstract

This paper describes a cyber-physical system for the manipulation of Deformable Linear Objects (DLOs) addressing the DLO-in-hole insertion problem targeting an industrial sce-nario, the switchgear's components cabling task. In particular, the task considered is the insertion of DLOs in the switchgear components' holes. This task is very challenging since a precise knowledge of the DLO tip position and orientation is required for a successful operation. We tackled the DLO-in-hole problem from the computer vision perspective constraining our setup on employing just simple 2D images and by using the mobility of the robotic arm for achieving the full 3D knowledge of the DLOs. Then, the DLO tip is detected from two different image planes and the robot's trajectory corrected accordingly before insertion. To prove the effectiveness of the proposed solution, an example scenario is prepared and the method validated experimentally attempting the insertion of several DLOs in a sample switchgear component, obtaining an overall insertion success rate of 82.5 %.
2022
978-1-6654-9770-1
File in questo prodotto:
File Dimensione Formato  
Cable_Detection_and_Manipulation_for_DLO-in-Hole_Assembly_Tasks.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
cabledetection.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982164