Early stopping is a well known approach to reduce the time complexity for performing training and model selection of large scale learning machines. On the other hand, memory/space (rather than time) complexity is the main constraint in many applications, and randomized subsampling techniques have been proposed to tackle this issue. In this paper we ask whether early stopping and subsampling ideas can be combined in a fruitful way. We consider the question in a least squares regression setting and propose a form of randomized iterative regularization based on early stopping and subsampling. In this context, we analyze the statistical and computational properties of the proposed method. Theoretical results are complemented and validated by a thorough experimental analysis.
NYTRO: When Subsampling Meets Early Stopping / Camoriano, R; Angles, T; Rudi, A; Rosasco, L. - ELETTRONICO. - 51:(2016), pp. 1403-1411. (Intervento presentato al convegno 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016) tenutosi a Cadiz, Spain nel 9 maggio 2016).
NYTRO: When Subsampling Meets Early Stopping
Camoriano R;
2016
Abstract
Early stopping is a well known approach to reduce the time complexity for performing training and model selection of large scale learning machines. On the other hand, memory/space (rather than time) complexity is the main constraint in many applications, and randomized subsampling techniques have been proposed to tackle this issue. In this paper we ask whether early stopping and subsampling ideas can be combined in a fruitful way. We consider the question in a least squares regression setting and propose a form of randomized iterative regularization based on early stopping and subsampling. In this context, we analyze the statistical and computational properties of the proposed method. Theoretical results are complemented and validated by a thorough experimental analysis.File | Dimensione | Formato | |
---|---|---|---|
camoriano16.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
667.85 kB
Formato
Adobe PDF
|
667.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2982144